卷积的步长计算公式

本文详细解析了TensorFlow中卷积操作中Valid和Same两种padding方式,通过实例演示如何计算不同输入尺寸下,使用11x11卷积核、4x4步长时,图像输出尺寸的变化。包括计算公式和实际应用案例,帮助理解这两种模式对输出尺寸的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

  • 输入图片尺寸: W*W。
  • Filter(卷积核)尺寸:F*F。
  • 步长 S(Stride)。
  • padding(填充)的像素数P,P=1就相当于给图像填充后图像大小为W+1 *W+1

    padding的方式通常有两种:Valid和Same,前者不对图像进行补零扩充,后者进行补零扩充。

  • 输出图片的大小为N * N。

  N=\left \lfloor \frac{W-F+2P}{Step} \right \rfloor+1    

-------------------------------------------------------------------------------------------------------------------------------

tensorflow中

  1. valid方式,N=(W-F+1)/ S
  2. Same方式, N=W / S 
  3. N结果取向上整

-------------------------------------------------------------------------------------------------------------------------------

例如:输入100x100分辨率的灰度图像

卷积核(11,11),步长(4,4),padding:Valid

(100-11+1)/4=22.3

向上取整,N=23

卷积后图像大小23x23

padding:Same

N=100/4=25

卷积后图像:25x25

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值