用于个人理解概念与记录,一定很不专业。
矢量场与数量场
数量场
类似于一般见到的 U(x)=f(x,y,z) 这样的函数,就可以描述一个数量场,因为每一个确定的 (x,y,z)坐标,都会有一个确定的函数值,该函数值没有方向只有大小,所以便描述出了一个数量场。个人理解,(x,y,z)是一个三维空间,但可以拓展到多维,如 u(x,y,z,r),来描述一个四维的数量场。
矢量场
类似于 U(x,y,z)=P(x)i+Q(x)j+R(x)k 这样的函数,每一个(x,y,z)点都对应一个矢量线,每一个点的矢量线,共同构成了矢量场。维度也是可以按该理解方式拓展吧。
高数中,第二类线积分,第二类面积分,就是去积,定义域内(x,y,z)上的矢量。
高中时,我们学过,矢量是没有位置概念的,但是具有方向和大小,这里不要混淆一个想法,(本人在学习电磁波课程时想不明白的点),既然(x,y,z)生成的矢量不具有位置概念,那么在矢量场中的某个面上,计算通量,是不是要总和每一个(x,y,z)产生的向量。这是非常错误的想法,某(x,y,z)点产生的向量,本身就具有矢量的特性,但是不是说,每个点产生的向量,就应该随意移动,可以选择通过平面,也可以选择不通过平面。(该段是个人思维上的误区,叙述不清请见谅)。