解不等式之平方根不等式

本文探讨了解平方根不等式√m+√(m+1)+...+√(2*m)>=n的方法,其中n是正数。通过分析不等式左边的增函数性质,采用循环和递推设计程序来寻找满足条件的正整数m。通过建立s(m)与s(m-1)的递推关系,可以将双循环简化为单循环,提高求解效率。以n=2017为例,不等式的解为m>=140。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对指定的正数n,试求满足以下平方根不等式的正整数;
√m+√(m+1)+√(m+2)+···+√(2*m)>=n

1.说明:
显然不等式左边是m的增函数,因而对于指定的正数n设置m循环,m从1开始递增1取值,对每一个m求和:
s(m)=√m+√(m+1)+√(m+3)+···√(2*m)

如果s(m) < n;
m增1后继续按上式求和判别,直至s>=n时输出不等式的解。

2.程序设计:
(1).应用循环设计求解;

#include<stdio.h>
#include<math.h>
void main()
{
  long i,m;
  double n,s,s1;
  printf("请输入正数n(n>3):");
    scanf("%lf",&n);    /*输入任意正数*/
  m=0;
  while(1)
  {
    m++;
    s=0;
    for(i=m;i<=2*m;i++)
      s+=sqrt(i);    /*对每一个m计算和s*/
    if(s>=n)
      break;
    else 
      s1=s;     /*为以下注明提供依据*/
  }
  printf("不等式的解为:m>=%ld\n",m);
  printf("注:当m=%ld时,s=%.2f;当m=%ld时,s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值