随机系统(stochastic systems)——以随机游走为例

本文探讨了随机游走的概念及其在描述咖啡在水中扩散过程中的应用。通过随机游走模型,我们可以理解扩散现象,揭示了宏观与微观世界的联系。文章介绍了扩散定律的普适性,并提及爱因斯坦关系,它连接了扩散系数和粘性摩擦系数,为实验测量分子尺度的特征提供了可能。
摘要由CSDN通过智能技术生成

目录

一杯咖啡是随机的吗?

生活中有许多例子是牛顿力学基本能完全描述的:苹果落地,炮弹轨迹等。这些简单的过程可以由微分方程和初始条件唯一确定。比如知道了炮弹的初始速度和角度,那么后续的轨迹就能用牛顿第二定律唯一解出来。但是生活中还有一些其他的例子,虽然也由牛顿力学控制,但是由于自由度太大,需要描述的参数实在太多,以致理论上的描述和预测根本行不通。自由度很大的系统有哪些?一小勺咖啡里的分子数量就足以说明问题:约有 N = 1 0 23 N=10^{23} N=1023(阿伏伽德罗常数)个分子,每个分子有6个自由度(x,y,z方向的位置和速度),每个自由度由一个微分方程控制,用目前的计算机解这么多个方程(6N个)组成的微分方程组是不可能完成的任务。

图1. 一杯咖啡里的分子(包括水分子和咖啡分子)个数约为阿伏伽德罗常数。图片摘自http://toddyoungblood.com/。

怎么解决这个问题呢?仔细考察这样的系统会发现,“随机性"承担了很重要的角色。这里的“随机性"可以从不同角度来理解:首先,在这么多粒子的系统中,我们不可能精确知道每个粒子的信息(位置和速度),这带来了一定的随机性;其次,这个系统可能和外界热源接触或有复杂的相互作用,用统计力学的概率分布和系综平均的方法来描述更合理。因此,即使这一小勺咖啡里的分子都受牛顿力学控制,对于信息的缺失迫使我们不得不使用统计力学描述(“随机性"描述)。实际上,这样的描述是现实世界很好的近似,而且与实验结果能很好符合。

我们就拿咖啡在水中的扩散作为例子。从宏观上看,当我们把咖啡磨成的粉稳稳地倒进一杯热水中时(不人为搅拌),可以看到咖啡粉不断地向外扩散,直到整杯水都变成褐色。从微观上来看,当我们把一堆咖啡分子(严格来说应该是块状小碎屑,我们不可能把咖啡磨到分子层面,但为了说明方便,暂且用这个叫法)倒进水中后,如果我们能站在其中某个分子上跟着它运动,就会看到如下一幕:这个分子在水中走的轨迹很杂乱,一会儿撞到其他水分子或咖啡分子改变了运动方向和速度,走了一段直线距离(牛顿第一定律)后又撞到另一个分子,又改变了运动方向和速度……前面已经解释过,如果用牛顿运动方程组来求解每个粒子的运动信息,目前的计算能力根本不可能完成;即使能够求解,我们得到的也只是每个粒子的位置和速度随时间的变化而已,对于这个扩散过程本身并不能带来深刻的理解。什么意思呢?举个简单的例子,假设我们求解出了咖啡粉在100ml水中均匀扩散开所需的时间,那么如果想知道在200ml的水中完全扩散的时间,是不是还得重新计算一遍?多麻烦呀!没关系,这个咖啡杯问题我们马上就能解答。

图2. 一团咖啡分子(红色)在水中的溶解,注意到红色粒子之间会相互碰撞改变速度方向和大小。不过这个动画描述的过于简单,没有画出水分子,也没有展现水分子和咖啡分子碰撞的效应。图片摘自http://cronodon.com/BioTech/Diffusion.html。

换个角度看待上述不可能求解的方程:受牛顿力学控制的方程组自由度那么大,其实里面包含的信息是冗余的;我们没必要知道那么多信息,只要用一种统计的描述就够了,也就是对所有分子轨迹的平均行为进行描述即可。因为粒子数足够多,这个求平均的操作也就能很好定义。

现在我们到了最关键的一步:既然我们只想知道平均意义下的系统的行为,我们就可以对真实系统建模,用一个随机过程来近似一个(受牛顿力学控制的)确定的过程,建模的要求是这两个过程具有相同的平均行为。这里的“确定的过程"指的是上述庞大的牛顿方程组的确定解。具体来说,我们把每个粒子不断受撞击而产生的复杂轨迹建模成一个“随机游走"过程,就像深夜一个醉汉在马路上晃悠一样,没有别人推搡,自己在那乱走;而且我们假设这种粒子的随机“乱走"在行为表现上等效于真实的不断受到撞击的走法。这种近似在多大程度上是合理的,我们在后面会提到。

图3. 随机行走(random walk),或醉汉行走。图片摘自George Gamov, 1961。
图4. 800个粒子构成的热力学系统的模拟,蓝线为其中5个粒子的轨迹,红色为其中一个粒子的速度向量。当系统里的粒子数足够大时,单个粒子的行为可以用随机游走模型来近似。图片摘自Wikipedia:Brownian motion。

从上面的讨论中,我们已经差不多达成了一致:可以用随机游走模型来等效描述咖啡在水中的扩散行为。**一杯咖啡是确定的,但是为了理解它的行为,我们通过建立模型引入了随机性。**现在我们需要讲一点硬核的物理了。

随机游走与扩散

限于篇幅,我们在这里只讨论简单的情况:一维固定步长的无漂移随机游走(取那么长的名字是为了更严谨)。假设每个粒子只能沿着一条直线运动,每次只能向左或向右随机走一步,那么在走了第N步后,我们可以对这些粒子的位置 x N = ∑ n = 1 N s n x_N=\sum_{n=1}^Ns_n xN=n=1Nsn有哪些认知呢?上式中 s n = k n L s_n=k_nL sn=knL L L L表示每一步的固定步长, k N k_N kN相同的可能性取 ± 1 \pm1 ±1

首先,从对称性的角度来讲,每一步位移向左或向右是等概率的,均值为零( &lt; s n &gt; = 0 &lt;s_n&gt;=0 <sn>=0),因此对所有粒子随机游走的轨迹求平均不会在任何方向上有系统性的偏移(你会看到一杯咖啡自己沿着桌子跑吗?)。于是, &lt; x N &gt; = ∑ n = 1 N &lt; s n &gt; = 0 &lt;x_N&gt;=\sum_{n=1}^N&lt;s_n&gt;=0 <xN>=n=1N<sn>=0这里的平均严格来说指的是统计力学中的系综平均。

其次,我们来看位移的方均值(在平均值附近的涨落;或二阶矩,因为均值为零)。 &lt; x N 2 &gt; = &lt; ( x N − 1 + k N L ) 2 &gt; = &lt; x N − 1 2 &gt; + 2 L &lt; x N − 1 k N &gt; + L 2 &lt; k N 2 &gt; &lt;x_N^2&gt;=&lt;(x_{N-1}+k_NL)^2&gt;=&lt;x_{N-1}^2&gt;+2L&lt;x_{N-1}k_N&gt;+L^2&lt;k_N^2&gt; <xN2>=<(xN1+kNL)2>=<xN12>+2L<xN1kN>+L2<kN2>
因为每一步的 k N k_N kN与前一步的位置 x N − 1 x_{N-1} xN1相互独立,而 &lt; k N &gt; = 0 &lt;k_N&gt;=0 <kN>=0,所以最右边中间一项的贡献为零( &lt; x N − 1 k N &gt; = &lt; x N − 1 &gt; &lt; k N &gt; = 0 &lt;x_{N-1}k_N&gt;=&lt;x_{N-1}&gt;&lt;k_N&gt;=0 <xN1kN>=<

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>