系综理论(Ensemble Theory)

本文参考[Pathria] Statistical Mechanics (3rd Ed.)里的思路整理了系综理论的一些基本知识。Pathria的书有较多繁复的计算,在此不详细给出,只希望对系综理论能形成一个宏观的认知。

1. 前言

给定一个系统的宏观态描述 ( N , V , E ) (N,V ,E) (N,V,E),即系统具有固定的粒子数、体积、总能量,它在不同时刻都会处于某一个微观态,而这些可能的微观态数目很多很多。随着时间 t t t演化,系统在不同的微观态之间不断切换,这种切换遵循的是由哈密顿量 H H H给出的运动方程。我们可以把“微观态”看成在某一时刻给系统拍的一张张照片,每一张照片就代表 6 N 6N 6N维相空间 { q i , p i } \{q_i,p_i\} {qi,pi}中的一个点。

如果我们在一段足够长的时间内对系统进行某个量的观测,我们假设系统能够遍历相空间的每一个相点(尽管系统处在每个点处的概率一般不同),而观测到的物理量(Observable),则是这些相点对应的微观态的测量值按照处在该点的概率所计算出的平均值。我们也可以换个角度定义物理量:在某一个时刻,我们假想系统有无数多个“拷贝”,这些拷贝出来的假想系统所处的宏观态都是 ( N , V , E ) (N,V ,E) (N,V,E),但是它们所处的微观态各不相同,如果去统计这一堆假想系统的微观态的分布概率,很自然地会假设它和前面提到的按照长时间演化所得到的分布概率相同。这样我们就换了一种描述形式,从时间平均转变成另一种平均,叫作系综平均,这些假想系统组成的集合就叫做系综。注意,这个假设只对处在平衡态的系统成立。任意一个时刻 t t t,物理量 f f f的系综平均为:
在这里插入图片描述
其中 ρ ( q , p , t ) \rho(q,p,t) ρ(q,p,t)表示相空间中每个微观态的概率分布函数。我们假设相空间每个点的运动服从哈密顿力学,则我们有 q i ˙ = ∂ H ∂ p i ,   p i ˙ = − ∂ H ∂ q i  for  i = 1 , 2 , . . . , 3 N . \dot{q_i}=\frac{\partial H}{\partial p_i},\ \dot{p_i}=-\frac{\partial H}{\partial q_i}\ \text{for}\ i=1,2,...,3N. qi˙=piH, pi˙=qiH for i=1,2,...,3N. 从而可以进一步得到分布函数的动力学,可以用刘维尔定理描述(推导见Pathria 2.2, [   ,   ] [\ ,\ ] [ , ]表示泊松括号): d ρ d t = ∂ ρ ∂ t + [ ρ , H ] = 0. \frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+[\rho,H]=0. dtdρ=tρ+[ρ,H]=0. 这个式子表明,如果我们跟着相空间的密度分布“流体”运动,我们周围小范围内的流体密度不随时间改变(相空间的密度流是不可压流体!),这是一个普适结论。

如果 ρ \rho ρ不显含时间,即 ∂ ρ ∂ t = 0 \frac{\partial \rho}{\partial t}=0 tρ=0,那么我们称这个系综是稳定的。注意这是额外的条件,它要求在相空间每一个固定点上看(而不是随着流体一起运动),密度都不变。如果上述两个等式都成立,那么我们有 [ ρ , H ] = 0 [\rho,H]=0 [ρ,H]=0

满足这个条件的一个可能解是,在我们关心的相空间区域里 ρ = c o n s t . \rho=const. ρ=const.(当然,在相空间的其他区域概率密度均为零)。它表达的物理意义是,在任意时刻,系统处在任意(允许出现的)微观态的概率均相同,这个就是通常所说的微正则系综

另一个可能的解是, ρ \rho ρ对于 ( q , p ) (q,p) (q,p)的依赖是显含在哈密顿量 H H H里的,即 ρ ( q , p ) = ρ ( H ( q , p ) ) \rho(q,p)=\rho(H(q,p)) ρ(q,p)=ρ(H(q,p))。所有满足这种形式的分布都是稳定分布,其中最自然的一种选择就是 ρ ( q , p ) = exp ⁡ [ − H ( q , p ) / k T ] \rho(q,p)=\exp[-H(q,p)/kT] ρ(q,p)=exp[H(q,p)/kT],叫作正则系综

2. 微正则系综 ( N , V , E ) (N,V,E) (N,V,E)

(*实际上E的值不能被精确固定,因为没有绝对与外界隔绝的系统存在,系统或多或少都会与环境接触产生能量涨落,因此E也可认为是区间 [ E − 1 / 2 Δ , E + 1 / 2 Δ ] [E-1/2\Delta,E+1/2\Delta] [E1/2Δ,E+1/2Δ]],且 Δ ≪ E \Delta\ll E ΔE。)
统计力学要解决的一大问题就是搞清楚微观性质和宏观物理量的关系。我们现在就来讨论微正则系综(微观)是如何推导出系统的热力学行为的(宏观)。一个直接的结果是,如果系统允许出现的相空间总体积 ω \omega ω,除以用来表征“一个微观态”的单位体积 ω 0 \omega_0 ω0(而不是一个体积为零的相点),那么系统的玻尔兹曼熵为就是 S = k ln ⁡ ( ω / ω 0 ) S=k\ln(\omega/\omega_0) S=kln(ω/ω0)。从量纲的角度看, ω 0 \omega_0 ω0应该是角动量的 3 N 3N 3N次方。Pathria的书中2.4、2.5节用了经典和量子的例子说明, ω 0 = h N \omega_0=h^\mathscr{N} ω0=hN,其中 N \mathscr{N} N是系统的自由度个数,这里是 3 N 3N 3N

3. 正则系综 ( N , V , T ) (N,V,T) (N,V,T)

在系综理论的实际应用中,我们一般不会测量系统总能量(或者无法测量),也不会要求系统能量固定(或在某个很窄的能量区间内)。因此,把能量固定的要求换成温度固定是个更好的选择。一方面温度方便测量(放个温度计就行),另一方面也更好控制实验(把系统和合适的热源接触即可)。我们对热源的细节并没有要求,唯一的要求就是它要有无穷大的热容,这样的话才能保证系统和热源进行热交换并不会改变热源所具有的恒定温度。现在,让我们把系统的无穷多个拷贝组成的整体看成是热源,那么就出现了另一个系综,这个系综下每个系统的宏观量都用 ( N , V , T ) (N,V,T) (N,V,T)描述,叫作正则系综。

在正则系综里,系统的能量取值理论上可以从零到无穷大,那么问题来了:在任意一个时刻,系统处于能量 E r E_r Er的概率 P r P_r Pr是多少?这个问题可以有两种求解方式,一种是仍旧看成系统和一个很大的热源形成热力学平衡,具有相同温度;另一种是用系综的观点,把系统当成正则系综中的一个成员,分析总能量是如何在N个相同的系统中分配的。见Pathria 3.1、3.2。最后的结果是 P r = exp ⁡ ( − β E r ) ∑ r exp ⁡ ( − β E r ) . P_r=\frac{\exp(-\beta E_r)}{\sum_r \exp(-\beta E_r)}. Pr=rexp(βEr)exp(βEr). 内能U是 U ≡ < E > = ∑ r E r exp ⁡ ( − β E r ) ∑ r exp ⁡ ( − β E r ) = − ∂ ∂ β ln ⁡ { ∑ r exp ⁡ ( − β E r ) } . U\equiv\left<E\right>=\frac{\sum_r E_r\exp(-\beta E_r)}{\sum_r \exp(-\beta E_r)}=-\frac{\partial}{\partial \beta}\ln\left\{\sum_r \exp(-\beta E_r)\right\}. UE=rexp(βEr)rErexp(βEr)=βln{rexp(βEr)}.配分函数 Q N ( V , T ) = ∑ r exp ⁡ ( − β E r ) = ∑ i g i exp ⁡ ( − β E i ) = ∫ 0 ∞ d E   g ( E ) exp ⁡ ( − β E ) , Q_N(V,T)=\sum_r \exp(-\beta E_r)=\sum_i g_i\exp(-\beta E_i)=\int_0^\infty dE\ g(E)\exp(-\beta E), QN(V,T)=rexp(βEr)=igiexp(βEi)=0dE g(E)exp(βE),其中 r r r表示对微观态求和; i i i表示对能级求和( g i g_i gi为第 i i i个能级的简并度,对于每个能量 E i E_i Ei,这 g i g_i gi个微观态出现的概率相同);最后一个等式是能级密集到可以当成连续的情况; g ( E ) g(E) g(E)称为态密度。配分函数能唯一决定系统的热力学性质,但是从定义上看它只依赖于系统的能谱,与系统的微观态 ( q i , p i ) (q_i,p_i) (qi,pi)无关,因此并不能完全描述系统!

注意到此处配分函数 Q ( β ) Q(\beta) Q(β)实际上是态密度 g ( E ) g(E) g(E)的Laplace变换!因此 g ( E ) g(E) g(E)可写成 Q ( β ) Q(\beta) Q(β)Laplace逆变换 g ( E ) = 1 2 π i ∫ β ′ − i ∞ β ′ + i ∞ e β E Q ( β ) d β   ( β ′ > 0 ) . g(E)=\frac{1}{2\pi i}\int_{\beta'-i\infty}^{\beta'+i\infty}e^{\beta E}Q(\beta)d\beta\ (\beta'>0). g(E)=2πi1βiβ+ieβEQ(β)dβ (β>0).

应用到经典系统——全同粒子组成的理想气体

经典系统的描述方式就在 { q i , p i } \{q_i,p_i\} {qi,pi}相空间,相空间的微元是 d ω ≡ d 3 N q d 3 N p d\omega\equiv d^{3N}qd^{3N}p dωd3Nqd3Np。要写下配分函数,我们还需要考虑在这个微元里不同“量子态”的个数,没错,尽管我们用了经典的粒子描述,但还是要考虑粒子的全同性,此个数是 d ω N ! h 3 N \frac{d\omega}{N!h^{3N}} N!h3Ndω,因此正确的配分函数是 Q N ( V , T ) = 1 N ! h 3 N ∫ e − β H ( q , p ) d ω . Q_N(V,T)=\frac{1}{N!h^{3N}}\int e^{-\beta H(q,p)}d\omega. QN(V,T)=N!h3N1eβH(q,p)dω. 现在考虑理想气体,哈密顿量是 H ( q , p ) = ∑ i N p i 2 / 2 m H(q,p)=\sum_i^N p_i^2/2m H(q,p)=iNpi2/2m,配分函数是 Q N ( V , T ) = V N N ! h 3 N [ ∫ 0 ∞ e − p 2 / 2 m k T ( 4 π p 2 d p ) ] N = 1 N ! [ V h 3 ( 2 π m k T ) 3 / 2 ] N = 1 N ! Q 1 ( V , T ) N . Q_N(V,T)=\frac{V^N}{N!h^{3N}}\left[\int_0^\infty e^{-p^2/2mkT}(4\pi p^2dp)\right]^N=\frac{1}{N!}\left[\frac{V}{h^3}(2\pi mkT)^{3/2}\right]^N=\frac{1}{N!}Q_1(V,T)^N. QN(V,T)=N!h3NVN[0ep2/2mkT(4πp2dp)]N=N!1[h3V(2πmkT)3/2]N=N!1Q1(V,T)N. 最后一个等式中 Q 1 Q_1 Q1表示单粒子配分函数,显然粒子的内部自由度(如果有的话)不会影响这个结果,这个结果成立的唯一条件是粒子之间没有相互作用,即哈密顿量不含 V V V项。

亥姆霍兹自由能为(其中用到了Stirling’s formula): A ( N , V , T ) ≡ − k T ln ⁡ Q N ( V , T ) = N k T [ ln ⁡ { N V ( h 2 2 π m k T 3 / 2 ) } − 1 ] . A(N,V,T)\equiv-kT\ln Q_N(V,T)=NkT\left[\ln\left\{\frac{N}{V}\left(\frac{h^2}{2\pi mkT}^{3/2}\right)\right\}-1\right]. A(N,V,T)kTlnQN(V,T)=NkT[ln{VN(2πmkTh23/2)}1]. 注意一个有意思的物理量: P ≡ − ( ∂ A ∂ V ) N , T = N k T V P\equiv-\left(\frac{\partial A}{\partial V}\right)_{N,T}=\frac{NkT}{V} P(VA)N,T=VNkT,我们得到了理想气体状态方程!而且回溯这个状态方程的推导过程,这个结果似乎和粒子全同性(全同性导致了 ln ⁡ \ln ln里面出现的那个 N N N)并没有关系。

有了配分函数,我们就可以用Laplace逆变换得到态密度: g ( E ) = V N N ! ( 2 π m h 2 ) 3 N / 2 1 2 π i ∫ β ′ − i ∞ β ′ + i ∞ e β E β 3 N / 2 d β   ( β ′ > 0 ) . g(E)=\frac{V^N}{N!}\left(\frac{2\pi m}{h^2}\right)^{3N/2}\frac{1}{2\pi i}\int_{\beta'-i\infty}^{\beta'+i\infty}\frac{e^{\beta E}}{\beta^{3N/2}}d\beta\ (\beta'>0). g(E)=N!VN(h22πm)3N/22πi1βiβ+iβ3N/2eβEdβ (β>0). 对于所有正数 n n n,我们有 2 π i ∫ β ′ − i ∞ β ′ + i ∞ e β E β n + 1 d β = { E n n ! , x ≥ 0 0 , x ≤ 0 {2\pi i}\int_{\beta'-i\infty}^{\beta'+i\infty}\frac{e^{\beta E}}{\beta^{n+1}}d\beta= \begin{cases} \frac{E^n}{n!} & ,x\geq0 \\0 & ,x\leq0 \end{cases} 2πiβiβ+iβn+1eβEdβ={n!En0,x0,x0因此 g ( E ) = { V N N ! ( 2 π m h 2 ) 3 N / 2 E 3 N / 2 − 1 { 3 N / 2 − 1 } ! , E ≥ 0 0 , E ≤ 0 . g(E)= \begin{cases} \frac{V^N}{N!}\left(\frac{2\pi m}{h^2}\right)^{3N/2}\frac{E^{3N/2-1}}{\{3N/2-1\}!}& ,E\geq0 \\0 & ,E\leq0 \end{cases}. g(E)={N!VN(h22πm)3N/2{3N/21}!E3N/210,E0,E0.一般来说,从第一性原理计算态密度(在 L 3 L^3 L3立方体里计算,用微正则系综)要比从配分函数出发复杂得多,上述推导给出了后者的一种路径。

正则系综v.s.微正则系综

正则系综的能量涨落范围是零到正无穷,而微正则系综的能量限制在很窄的范围内。我们可以宣称从两种系综出发得到的系统热力学性质是一样的吗?显然,如果不一样,那么我们的理论本身就不自恰。

正则系综下,内能 U U U的表达式已经在前面给出,对它求导 − ∂ U ∂ β = − < E 2 > + < E > 2 ≡ < ( Δ E ) 2 > = k T 2 ∂ U ∂ T = k T 2 C V . -\frac{\partial U}{\partial\beta}=-\left<E^2\right>+\left<E\right>^2\equiv\left<(\Delta E)^2\right>=kT^2\frac{\partial U}{\partial T}=kT^2C_V. βU=E2+E2(ΔE)2=kT2TU=kT2CV.因此我们有 < ( Δ E ) 2 > < E > ∼ C V U ∼ U U ∼ N − 1 / 2 \frac{\sqrt{\left<(\Delta E)^2\right>}}{\left<E\right>}\sim \frac{\sqrt{C_V}}{U}\sim \frac{\sqrt{U}}{U}\sim N^{-1/2} E(ΔE)2 UCV UU N1/2这说明对粒子数 N N N很大的系统(一般来说都符合),能量涨落方均根的相对大小可以忽略!因此,正则系综下的系统能量十分接近平均能量 U U U,它与微正则系综得到的结果相同也就不足为奇了。

从哈密顿方程出发,在正则系综下,我们有维里定理(virial theorem of Clausius (1870) )(推导见Pathria3.7): v ≡ &lt; ∑ i q i p i ˙ &gt; = − 3 N k T v\equiv\left&lt;\sum_iq_i\dot{p_i}\right&gt;=-3NkT viqipi˙=3NkT。左边是对粒子坐标与作用力乘积进行求和后再求系综平均。这个定理应用在无相互作用理想气体上,就得到 P V = N k T PV=NkT PV=NkT;应用在有两体相互作用 u ( r ) u(r) u(r) d d d维气体上,就得到维里状态方程( virial equation of state) P n k T = 1 − 1 N d k T &lt; ∑ i &lt; j ∂ u ( r i j ) ∂ r i j r i j &gt; . \frac{P}{nkT}=1-\frac{1}{NdkT}\left&lt;\sum_{i&lt;j}\frac{\partial u(r_{ij})}{\partial r_{ij}}r_{ij}\right&gt;. nkTP=1NdkT1i<jriju(rij)rij.

正则系综应用在简谐振子系统将会在另一篇文章中给出。

4. 巨正则系综 ( μ , V , T ) (\mu,V,T) (μ,V,T)

前面我们提到用正则系综的恒定温度条件替代微正则系综的恒定能量条件,可以避免直接测量能量的难题。然而在许多问题中,我们还会面临测量系统总粒子数的问题,也就是对那些粒子不是被封闭在一个区域里出不去的系统,我们很难精确测量粒子数。这就要求我们做进一步推广,不仅把能量 E E E当成变量,也把 N N N当成变量,相应地可以定义它们各自的热力学量(温度和化学势)。我们同样可以重复前面的思路计算微观态概率分布,(1) 要么考虑系统和一个大的热/粒子源接触,它们可以交换能量和粒子;(2) 要么把系统当做一大堆假想系统构成的集合中的一个普通成员,它们之间可以交换能量和粒子,这个集合叫作巨正则系综。这两个思路的结果渐进等价(推导见Pathria4.1、4.2)。

巨正则分布函数为 P r , s = exp ⁡ ( − α N r − β E s ) ∑ r , s exp ⁡ ( − α N r − β E s ) P_{r,s}=\frac{\exp(−\alpha N_r −\beta E_s)}{\sum_{r,s}\exp(−\alpha N_r −\beta E_s)} Pr,s=r,sexp(αNrβEs)exp(αNrβEs)其中 α = − μ / k T , β = 1 / k T \alpha=−\mu/kT, \beta=1/kT α=μ/kT,β=1/kT。每一个微观态用 ( N r , E s ) (N_r,E_s) (Nr,Es)表示。

定义q-potential(first introduced by Kramers) q = ln ⁡ { ∑ r , s exp ⁡ ( − α N r − β E s ) } q=\ln\left\{\sum_{r,s}\exp(-\alpha N_r-\beta E_s)\right\} q=ln{r,sexp(αNrβEs)}可以证明 q = P V k T q=\frac{PV}{kT} q=kTPV(见Pathria4.3)。

&lt; N &gt; = ∑ r , s N r exp ⁡ ( α N r − β E s ) ∑ r , s exp ⁡ ( α N r − β E s ) = − ∂ q ∂ α &lt; E &gt; = ∑ r , s E s exp ⁡ ( α N r − β E s ) ∑ r , s exp ⁡ ( α N r − β E s ) = − ∂ q ∂ β \left&lt;N\right&gt;=\frac{\sum_{r,s}N_r\exp(\alpha N_r-\beta E_s)}{\sum_{r,s}\exp(\alpha N_r-\beta E_s)}=-\frac{\partial q}{\partial\alpha}\\ \left&lt;E\right&gt;=\frac{\sum_{r,s}E_s\exp(\alpha N_r-\beta E_s)}{\sum_{r,s}\exp(\alpha N_r-\beta E_s)}=-\frac{\partial q}{\partial\beta} N=r,sexp(αNrβEs)r,sNrexp(αNrβEs)=αqE=r,sexp(αNrβEs)r,sEsexp(αNrβEs)=βq

定义 z ≡ e − α = e μ / k T z\equiv e^{-\alpha}=e^{\mu/kT} zeα=eμ/kT称作系统的fugacity。因此q-potential可改写为 q ( z , V , T ) = ln ⁡ { ∑ r , s z N r e − β E s } = ln ⁡ { ∑ N r = 0 ∞ z N r Q N r ( V , T ) } ≡ ln ⁡ Q ( z , V , T ) ,  with  Q 0 ≡ 1. q(z,V,T)=\ln\left\{\sum_{r,s}z^{N_r}e^{-\beta E_s}\right\}=\ln\left\{\sum_{N_r=0}^\infty z^{N_r}Q_{N_r}(V,T)\right\}\equiv\ln\mathcal{Q}(z,V,T),\ \text{with}\ Q_0\equiv1. q(z,V,T)=ln{r,szNreβEs}=ln{Nr=0zNrQNr(V,T)}lnQ(z,V,T), with Q01. Q ( z , V , T ) \mathcal{Q}(z,V,T) Q(z,V,T)叫作巨配分函数,q-potential就是巨配分函数取 ln ⁡ \ln ln

现在我们用q-potential推导热力学量。 P ( z , V , T ) = k T V q ( z , V , T ) ≡ k T V ln ⁡ Q ( z , V , T ) P(z,V,T)=\frac{kT}{V}q(z,V,T)\equiv\frac{kT}{V}\ln\mathcal{Q}(z,V,T) P(z,V,T)=VkTq(z,V,T)VkTlnQ(z,V,T) N ( z , V , T ) = z [ ∂ ∂ z q ( z , V , T ) ] V , T = k T [ ∂ ∂ μ q ( μ , V , T ) ] V , T N(z,V ,T)=z\left[\frac{\partial}{\partial z}q(z,V,T)\right]_{V,T}=kT\left[\frac{\partial}{\partial \mu}q(\mu,V,T)\right]_{V,T} N(z,V,T)=z[zq(z,V,T)]V,T=kT[μq(μ,V,T)]V,T U ( z , V , T ) = − [ ∂ ∂ β q ( z , V , T ) ] z , T = k T 2 [ ∂ ∂ T q ( z , V , T ) ] z , T U(z,V ,T)=-\left[\frac{\partial}{\partial \beta}q(z,V,T)\right]_{z,T}=kT^2\left[\frac{\partial}{\partial T}q(z,V,T)\right]_{z,T} U(z,V,T)=[βq(z,V,T)]z,T=kT2[Tq(z,V,T)]z,T

Gibbs自由能 G ( N , P , T ) = U − T S + P V = A + P V = μ ( P , T ) N G(N,P,T)=U−TS+PV=A+PV=\mu(P,T)N G(N,P,T)=UTS+PV=A+PV=μ(P,T)N,因此化学势是单位粒子的Gibbs自由能。

  • 6
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 智慧社区背景与挑战 随着城市化的快速发展,社区面临健康、安全、邻里关系和服务质量等多方面的挑战。华为技术有限公司提出智慧社区解决方案,旨在通过先进的数字化技术应对这些问题,提升城市社区的生活质量。 2. 技术推动智慧社区发展 技术进步,特别是数字化、无线化、移动化和物联化,为城市社区的智慧化提供了可能。这些技术的应用不仅提高了社区的运行效率,也增强了居民的便利性和安全性。 3. 智慧社区的核心价值 智慧社区承载了智慧城市的核心价值,通过全面信息化处理,实现对城市各个方面的数字网络化管理、服务与决策功能,从而提升社会服务效率,整合社会服务资源。 4. 多层次、全方位的智慧社区服务 智慧社区通过构建和谐、温情、平安和健康四大社区模块,满足社区居民的多层次需。这些服务模块包括社区医疗、安全监控、情感沟通和健康监测等。 5. 智慧社区技术框架 智慧社区技术框架强调统一平台的建设,设立数据中心,构建基础网络,并通过分层建设,实现平台能力及应用的可持续成长和扩展。 6. 感知统一平台与服务方案 感知统一平台是智慧社区的关键组成部分,通过统一的RFID身份识别和信息管理,实现社区服务的智能化和便捷化。同时,提供社区内外监控、紧急救助服务和便民服务等。 7. 健康社区的构建 健康社区模块专注于为居民提供健康管理服务,通过整合医疗资源和居民接入,实现远程医疗、慢性病管理和紧急救助等功能,推动医疗模式从治疗向预防转变。 8. 平安社区的安全保障 平安社区通过闭路电视监控、防盗报警和紧急助等技术,保障社区居民的人身和财产安全,实现社区环境的实时监控和智能分析。 9. 温情社区的情感沟通 温情社区着重于建立社区居民间的情感联系,通过组织社区活动、一键呼叫服务和互帮互助平台,增强邻里间的交流和互助。 10. 和谐社区的资源整合 和谐社区作为社会资源的整合协调者,通过统一接入和身份识别,实现社区信息和服务的便捷获取,提升居民生活质量,促进社区和谐。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值