如何用均匀分布随机数生成正态分布随机数

前言

在Monte Carlo模拟技术中,许多地方都需要用到符合标准正态分布(高斯)的随机数来设计采样方案,因此了解如何用均匀分布随机数(实际上是均匀分布的伪随机数)来生成标准正态分布的随机数十分重要。本文将对这个最基本的问题做讨论,并提供c++11代码。

在讨论更高效的算法之前,我们先来看看能不能基于中心极限定理来设计算法。中心极限定理告诉我们,对于一组 i . i . d i.i.d i.i.d的随机数 { x k } ∼ U ( μ , σ 2 ) \{x_k\}\sim U(\mu,\sigma^2) { xk}U(μ,σ2),有 1 n ∑ i = 1 n x i → N ( μ , σ 2 / n ) \frac{1}{n}\sum_{i=1}^n x_i \rightarrow N(\mu,\sigma^2/n) n1i=1nxiN(μ,σ2/n)。这个算法有两个问题:

  1. 计算量大。生成一个数需要用n个均匀分布随机数。
  2. 无法准确刻画正态分布的末端效应。生成的数均有界,不会是很大的数。

此外,如果用“拒绝采样(rejection sampling)“的思路,在覆盖 f ( x ) = c e − x 2 / 2 f(x)=ce^{-x^2/2} f(x)=cex2/2的矩形内均匀投点,保留曲线下的点,则计算较复杂(exp函数),而且舍弃点多代价大。

我们下面介绍两种更高效的算法:The Box–Muller transform 和 The Ziggurat algorithm。它们一个是对分布函数做了变换,另一个还是使用了“拒绝采样“的思路,但并不是简单的仅用一个大矩形覆盖。

The Box–Muller transform

The Box–Muller transform 把一对均匀分布随机数映射到一对标准正态分布随机数。它有两种形式:

  1. 基本形式:用 ( 0 , 1 ) (0,1) (0,1)均匀分布随机数,需要计算三角函数 sin ⁡ \sin sin cos ⁡ \cos cos
  2. 极坐标形式:用 ( − 1 , 1 ) (-1,1) (1,1)均匀分布随机数,且不需要计算三角函数。

我们希望计算积分 I = ∫ − ∞ ∞ e − x 2 / 2 d x I=\int_{-\infty}^{\infty}e^{-x^2/2}dx I=ex2/2dx,可以先取它的平方并用极坐标表示, I 2 = ∫ − ∞ ∞ ∫ − ∞ ∞ e − ( x 2 + y 2 ) / 2 d x d y = ∫ 0 2 π ∫ 0 ∞ r e r 2 / 2 d r d θ . I^2=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)/2}dxdy=\int_{0}^{2\pi}\int_{0}^{\infty}re^{r^2/2}drd\theta. I2=e(x2+y2)/2dxdy=02π0rer2/2drdθ.可以看到极角 θ \theta

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值