codeforces-1293B JOE is on TV!

本文解析了Codeforces比赛中的B题,介绍了游戏“1vs.n”的规则,JOE Miller作为参与者如何通过策略最大化奖励,以及如何通过编程实现这一策略。文章提供了一个C++代码示例,用于计算JOE在理想情况下能获得的最大奖金。

直接上题目
https://codeforces.com/contest/1293/problem/B

Our dear Cafe’s owner, JOE Miller, will soon take part in a new game TV-show “1 vs. n”!

The game goes in rounds, where in each round the host asks JOE and his opponents a common question. All participants failing to answer are eliminated. The show ends when only JOE remains (we assume that JOE never answers a question wrong!).

For each question JOE answers, if there are s (s>0) opponents remaining and t (0≤t≤s) of them make a mistake on it, JOE receives ts dollars, and consequently there will be s−t opponents left for the next question.

JOE wonders what is the maximum possible reward he can receive in the best possible scenario. Yet he has little time before show starts, so can you help him answering it instead?

Input
The first and single line contains a single integer n (1≤n≤105), denoting the number of JOE’s opponents in the show.

Output
Print a number denoting the maximum prize (in dollars) JOE could have.

Your answer will be considered correct if it’s absolute or relative error won’t exceed 10−4. In other words, if your answer is a and the jury answer is b, then it must hold that |a−b|max(1,b)≤10−4.

简单的数学公式推导,JOE要想获得最高的奖金,只要每次犯错的人数为1就行,Sum=1/n+1/(n-1)+1/(n-1-1)+···+1/1;
So

#include<cstdio>
#include<bits/stdc++.h>
using namespace std;
int main()
{
	double n;
	double s;
	cin>>n;
	s=n;
	double sum=0;
	while(s!=0){
		sum+=1.0/s;
		s--;
	}
	printf("%.12f\n",sum);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值