解法一(数组实现)
- /*********************************************************************************************
- # FileName: myjosephus.c
- # Desc:
- # Author: xutao
- # Email: butbueatiful@gmail.com
- # HomePage: http://butbueatiful.github.com
- # Version: 0.0.1
- # LastChange: 2012-03-16 19:24:13
- # History:
- *********************************************************************************************/
- #include <stdio.h>
-
- void init_person(int person[], int len)
- {
- int i;
- for (i = 0; i < len; i++)
- person[i] = i+1;
- }
-
- int main(int argc, char *argv[])
- {
- int i, remain, step, cnt_num, person_num;
-
- printf("N(person_num): ");
- scanf("%d", &person_num);
- printf("M(cnt_num): ");
- scanf("%d", &cnt_num);
-
- int person[person_num];
- remain = person_num;
- step = 1;
- i = 0;
-
- init_person(person, person_num);
-
- while (remain > 0) {
- if (person[i] != -1 && step != cnt_num)
- step++;
- else if (person[i] != -1 && step == cnt_num) {
- if (remain == 1)
- printf("the remain is %d\n", person[i]);
- person[i] = -1;
- step = 1;
- remain--;
- }
-
- i++;
- if (i == person_num)
- i = 0;
- }
-
- return 0;
- }
解法二(链表实现):
思想:建立一个有N个元素的循环链表,然后从链表头开始遍历并记数,如果计数i==m(i初始为1)踢出元素,继续循环,当当前元素与下一元素相同时退出循环。
- /*********************************************************************************************
- # FileName: Josephus.c
- # Desc: 约瑟夫环问题(Josephus) 用户输入M,N值,从1至N开始顺序循环数数,
- # 每数到M输出该数值,直至全部输出。写出C程序。(约瑟夫环问题 Josephus)
- # Author: xutao
- # Email: butbueatiful@gmail.com
- # HomePage: http://butbueatiful.github.com
- # Version: 0.0.1
- # LastChange: 2012-03-16 15:33:02
- # History:
- *********************************************************************************************/
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
-
- typedef struct ring {
- int pos;
- struct ring *pnext;
- } ring_t, *pring_t;
-
- void create_ring(pring_t phead, int person_cnt)
- {
- int i = 1;
- pring_t ptail, pnew;
- ptail = phead;
-
- while (--person_cnt > 0) {
- pnew = (pring_t)malloc(sizeof(ring_t));
- if (pnew == NULL) {
- printf("malloc fail.\n");
- exit(-1);
- }
- memset(pnew, 0, sizeof(ring_t));
-
- i++;
- pnew->pos = i;
- ptail->pnext = pnew;
- ptail = pnew;
- }
- pnew->pnext = phead;
- }
-
- void print_ring(pring_t phead)
- {
- pring_t p = phead;
-
- while (p->pnext != phead) {
- printf("%d ", p->pos);
- p = p->pnext;
- }
- printf("%d\n", p->pos);
- }
-
- void killed_person(pring_t phead, int step)
- {
- int cnt = 1;
- pring_t p, q;
-
- p = q = phead;
- while (p != NULL) {
- if (cnt == step) {
- printf("%d ", p->pos);
- q->pnext = p->pnext;
- free(p);
- p = q->pnext;
- cnt = 1;
- }
- q = p;
- p = p->pnext;
-
- if (q == p) {
- printf("\nSurvived %d\n", p->pos);
- free(p);
- break;
- }
-
- cnt++;
- }
- }
-
- int main(int argc, char *argv[])
- {
- int person_cnt, step;
- pring_t phead = NULL;
-
- person_cnt = step = 0;
- printf("---------------Josephus Ring--------------\n");
- printf("enter N(person count): ");
- scanf("%d", &person_cnt);
- printf("enter M(step count): ");
- scanf("%d", &step);
-
- phead = (pring_t)malloc(sizeof(ring_t));
- if (phead == NULL) {
- printf("malloc fail.\n");
- exit(-1);
- }
- memset(phead, 0, sizeof(ring_t));
- phead->pos = 1;
- phead->pnext = NULL;
- create_ring(phead, person_cnt);
-
- #ifdef DEBUG
- print_ring(phead);
- #endif
-
- printf("Killed\n");
- killed_person(phead, step);
-
- return 0;
- }
解法三(数学归纳法实现):
思想:归纳为数学性问题。
无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
k-1 --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:
令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)
有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i]
- /*********************************************************************************************
- # FileName: t.c
- # Desc:
- # Author: xutao
- # Email: butbueatiful@gmail.com
- # HomePage: http://butbueatiful.github.com
- # Version: 0.0.1
- # LastChange: 2012-03-16 19:30:53
- # History:
- *********************************************************************************************/
- #include <stdio.h>
-
- int main(int argc, char *argv[])
- {
- int person_num, cnt_num, i, s = 0;
-
- printf ("N (person_num): ");
- scanf("%d", &person_num);
- printf ("M (cnt_num): ");
- scanf("%d", &cnt_num);
-
- for (i = 2; i <= person_num; i++)
- s = (s + cnt_num) % i;
- printf ("The winner is %d\n", s+1);
- }