约瑟夫环问题

解法一(数组实现)

  1. /*********************************************************************************************
  2. # FileName: myjosephus.c
  3. # Desc: 
  4. # Author: xutao
  5. # Email: butbueatiful@gmail.com
  6. # HomePage: http://butbueatiful.github.com
  7. # Version: 0.0.1
  8. # LastChange: 2012-03-16 19:24:13
  9. History:
  10. *********************************************************************************************/
  11. #include <stdio.h>

  12. void init_person(int person[], int len)
  13. {
  14.     int i;
  15.     for (= 0; i < len; i++) 
  16.         person[i] = i+1;
  17. }

  18. int main(int argc, char *argv[])
  19. {
  20.     int i, remain, step, cnt_num, person_num;

  21.     printf("N(person_num): ");
  22.     scanf("%d", &person_num);
  23.     printf("M(cnt_num): ");
  24.     scanf("%d", &cnt_num);

  25.     int person[person_num];
  26.     remain = person_num;
  27.     step = 1;
  28.     i = 0;

  29.     init_person(person, person_num);

  30.     while (remain > 0) {
  31.         if (person[i] != -&& step != cnt_num) 
  32.             step++;
  33.         else if (person[i] != -&& step == cnt_num) {
  34.             if (remain == 1)
  35.                 printf("the remain is %d\n", person[i]);
  36.             person[i] = -1;
  37.             step = 1;
  38.             remain--;
  39.         }

  40.         i++;
  41.         if (== person_num)
  42.             i = 0;
  43.     }
  44.     
  45.     return 0;
  46. }

解法二(链表实现):
      思想:建立一个有N个元素的循环链表,然后从链表头开始遍历并记数,如果计数i==m(i初始为1)踢出元素,继续循环,当当前元素与下一元素相同时退出循环。
  1. /*********************************************************************************************
  2. # FileName: Josephus.c
  3. # Desc: 约瑟夫环问题(Josephus) 用户输入M,N值,从1至N开始顺序循环数数,
  4. #                每数到M输出该数值,直至全部输出。写出C程序。(约瑟夫环问题 Josephus)
  5. # Author: xutao
  6. # Email: butbueatiful@gmail.com
  7. # HomePage: http://butbueatiful.github.com
  8. # Version: 0.0.1
  9. # LastChange: 2012-03-16 15:33:02
  10. History:
  11. *********************************************************************************************/
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string.h>

  15. typedef struct ring {
  16.     int pos;    
  17.     struct ring *pnext;
  18. } ring_t, *pring_t;

  19. void create_ring(pring_t phead, int person_cnt)
  20. {
  21.     int i = 1;
  22.     pring_t ptail, pnew; 
  23.     ptail = phead;

  24.     while (--person_cnt > 0) {
  25.         pnew = (pring_t)malloc(sizeof(ring_t));
  26.         if (pnew == NULL) {
  27.             printf("malloc fail.\n");
  28.             exit(-1);
  29.         }
  30.         memset(pnew, 0, sizeof(ring_t));

  31.         i++;
  32.         pnew->pos = i;
  33.         ptail->pnext = pnew;
  34.         ptail = pnew;
  35.     }
  36.     pnew->pnext = phead;
  37. }

  38. void print_ring(pring_t phead)
  39. {
  40.     pring_t p = phead;

  41.     while (p->pnext != phead) {
  42.         printf("%d ", p->pos);
  43.         p = p->pnext;
  44.     }
  45.     printf("%d\n", p->pos);
  46. }

  47. void killed_person(pring_t phead, int step)
  48. {
  49.     int cnt = 1;
  50.     pring_t p, q;    
  51.     
  52.     p = q = phead;
  53.     while (!= NULL) {
  54.         if (cnt == step) {
  55.             printf("%d ", p->pos);
  56.             q->pnext = p->pnext;
  57.             free(p);
  58.             p = q->pnext;
  59.             cnt = 1;
  60.         }
  61.         q = p; 
  62.         p = p->pnext;

  63.         if (== p) {
  64.             printf("\nSurvived %d\n", p->pos);
  65.             free(p);
  66.             break;
  67.         }

  68.         cnt++;
  69.     }
  70. }

  71. int main(int argc, char *argv[])
  72. {
  73.     int person_cnt, step;
  74.     pring_t phead = NULL;

  75.     person_cnt = step = 0;
  76.     printf("---------------Josephus Ring--------------\n");
  77.     printf("enter N(person count): ");
  78.     scanf("%d", &person_cnt);
  79.     printf("enter M(step count): ");
  80.     scanf("%d", &step);

  81.     phead = (pring_t)malloc(sizeof(ring_t)); 
  82.     if (phead == NULL) {
  83.         printf("malloc fail.\n");
  84.         exit(-1);
  85.     }
  86.     memset(phead, 0, sizeof(ring_t));
  87.     phead->pos = 1;
  88.     phead->pnext = NULL;
  89.     create_ring(phead, person_cnt);

  90. #ifdef DEBUG
  91.     print_ring(phead);
  92. #endif

  93.     printf("Killed\n");
  94.     killed_person(phead, step);

  95.     return 0;
  96. }

解法三(数学归纳法实现):

思想:归纳为数学性问题。
      无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。
为了讨论方便,先把问题稍微改变一下,并不影响原意:
问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n
如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]
递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1
由于是逐级递推,不需要保存每个f[i]
  1. /*********************************************************************************************
  2. # FileName: t.c
  3. # Desc: 
  4. # Author: xutao
  5. # Email: butbueatiful@gmail.com
  6. # HomePage: http://butbueatiful.github.com
  7. # Version: 0.0.1
  8. # LastChange: 2012-03-16 19:30:53
  9. History:
  10. *********************************************************************************************/
  11. #include <stdio.h>

  12. int main(int argc, char *argv[])
  13. {
  14.     int person_num, cnt_num, i, s = 0;

  15.     printf ("N (person_num): ");
  16.     scanf("%d", &person_num);
  17.     printf ("M (cnt_num): ");
  18.     scanf("%d", &cnt_num);

  19.     for (= 2; i <= person_num; i++)
  20.         s = (+ cnt_num) % i;
  21.     printf ("The winner is %d\n", s+1);
  22. }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值