visonpon
码龄10年
关注
提问 私信
  • 博客:68,094
    68,094
    总访问量
  • 19
    原创
  • 2,075,868
    排名
  • 45
    粉丝
  • 0
    铁粉

个人简介:执着若愚,求索若渴

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2014-10-11
博客简介:

dp_BUPT的博客

博客描述:
小白一枚,关注人工智能,深度学习,数据挖掘
查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得7次评论
  • 获得27次收藏
创作历程
  • 7篇
    2017年
  • 6篇
    2016年
  • 8篇
    2015年
成就勋章
TA的专栏
  • Deep learning
    20篇
兴趣领域 设置
  • 人工智能
    tensorflowpytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

paper read weekly(six)

来来来,接下来我们就来推导推导
原创
发布博客 2017.09.24 ·
630 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

paper read weekly(five)

如果我会发光,就不必害怕黑暗; 如果我自己是那么美好,那么一切恐惧就可以烟消云散 当然,如果我可以做到。
原创
发布博客 2017.09.10 ·
1032 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Paper read weekly(Four)

densenet和hourglass的结合
原创
发布博客 2017.09.03 ·
680 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

paper read weekly(three)

一晃过去一周多了,白驹过隙里的8月,尾巴里的日子,既盼着早些过去,又心里暗许着每一秒的珍贵。 我热爱一切的需要等待和沉淀:琥珀里的时间,微暗的灯火,那忽明忽暗的未来,那在路上向彼此靠近的我们。
原创
发布博客 2017.08.27 ·
736 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

paper read weekly(two)

去清华听了4位参与CVPR2017同学的论文分享,感触颇深本周工作很紧,但忙里偷闲,还是看到了几篇耳目一新,有所启发的paper。
原创
发布博客 2017.08.20 ·
688 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Paper read weekly(one)

其实每周boss都会在周例会上给算法组的每个人留一个下周发散任务。最近更是和DeepMind死磕上了。。。基本上是出一篇读一篇,出一堆,全组人都上的节奏。这不,老板一下子给我安排了两篇。。。
原创
发布博客 2017.08.13 ·
653 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

17年 | 重开blog | 关于对称网络的的一点想(kun)法(huo)

距离上篇blog已经一年又近半载了。这之间,遇见科研,遇见跑步,遇见她,遇见别样的自己。重开blog,重拾初心,一切都是刚刚好,重头再来也没什么不可以。
原创
发布博客 2017.08.03 ·
4227 阅读 ·
5 点赞 ·
3 评论 ·
4 收藏

neural network and deep learning笔记(2)

上次读到这本书的第二章,第三章的内容较多,也做了一些扩展,所以单独出来。 #“In fact, with the change in cost function it’s not possible to say precisely what it means to use the “same” learning rate.”Cross -entropy function is a way to s
原创
发布博客 2016.04.02 ·
1201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

neural network and deep learning笔记(1)

neural network and deep learning 这本书看了陆陆续续看了好几遍了,但每次都会有不一样的收获。DL领域的paper日新月异,每天都会有很多新的idea出来,我想,深入阅读经典书籍和paper,一定可以从中发现remian open的问题,从而有不一样的视角。
原创
发布博客 2016.03.27 ·
3306 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

CNN的新进展(2)

本周主要学习内容包括上次blog未尽部分以及对经典文章的精读总结和思考。CNN中对损失函数(Loss function)的选择因问题类型的不同而有各异的合适选择。应用的比较多的包括S Softmax loss,Hinge loss和Contrastive loss。还有一些比较常用的正则化方法,诸如dropout/dropconnect以及学习连接的重要性等方法。dropout是在全连接层随机dro
原创
发布博客 2016.03.12 ·
1751 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

CNN的新进展(1)

本文将从三个方面来介绍:1. CNN网络结构的改善优化; 2. CNN网络训练中更快的计算方法; 3. CNN在各个领域的最新应用;1. CNN网络结构的改善优化之Conv层; CNN典型的网络结构和单元包括:卷积层、池化层、激活函数、损失函数以及正则化和最优化。卷积层的细化:这里介绍两个最新的进展,分别是NIN和Inception moduel。NINNIN的motivation是
原创
发布博客 2016.03.05 ·
2781 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

LR(Logistic Regression)深入理解 (续)

因为实习,耽搁了些许时间,这是上一篇的未完成部分。特此补上。 本文要解决的有两个问题:1. LR和ME(最大熵)的关系 2. LR的并行化
原创
发布博客 2016.01.23 ·
4345 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

LR(Logistic Regression)深入理解

这篇文章是对博客http://blog.csdn.net/cyh_24/article/details/50359055内容的搬运,个人感觉作者写得很好,所以自己想从头到尾“誊写”一遍,以便理解透彻。谢谢作者的辛苦总结~ PS:因为实习,将近3个月没有再写论文笔记了,该篇算是一个开头,后边一定要保证每周一篇阅读笔记。
原创
发布博客 2016.01.22 ·
13878 阅读 ·
0 点赞 ·
1 评论 ·
15 收藏

FaceNet: A Unified Embedding for Face Recognition and Clustering

本文有以下几个亮点:一是利用DNN直接学习到从原始图片到欧氏距离空间的映射,从而使得在欧式空间里的距离的度量直接关联着人脸相似度;二是引入triplet损失函数,使得模型的学习能力更高效。 本文的模型示意图如上,输入层后紧接着DNN,然后再运用L2正则化避免模型的过拟合,最后接上triplet损失函数层,以反映在人脸验证、识别和聚类中所想要的结果。这里的关键就是triplet损失函数的确定,我们想
原创
发布博客 2015.10.31 ·
3133 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

neural network and deep learning(笔记二)

第二章:BP算法详解首先需要理解的是权值的含义,wji是连接L-1层的第i个神经元和L层第j个神经元的权值。同时输入层和输出层不存在偏置。由下边公式可知,权值角标的安排是为了更直观的看到上一层的作为下一层的输入。L-1为0时激活值就是输入。 我们再来看目标函数:与第一章一样,仍然运用的是MSE。 接下来我们来看一个新概念:δji,表示L层第j个单元存在的误差。该单元输入微小的变化∆Zji会导
原创
发布博客 2015.10.25 ·
955 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

neural network and deep learing(笔记一)

第一章:运用NN识别手写数字人工智能已经在几乎所有需要思考的领域超过了人类,但是在那些人类和其它动物不需要思考就能完成的事情上,还差得很远 ——Donald Knuth正如上边这句话所言,我们在识别数字时完全是无意识的情况下完成的,但想要将这一动作抽象成计算机程序却是十分困难的。比如对数字9的解析:其上边是个圈,右下方是
原创
发布博客 2015.10.25 ·
836 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Which GPU(s) to Get for Deep Learning(译文)

当我们在DL中运用GPU进行运算时,它所能带来的速度上的提升一次又一次的使我们感到震惊:其运算速度一般比CPU快10倍,而在更复杂的问题上会快20倍。利用GPU你能更快地去实践新的想法、算法和实验,并且能及时得到反馈,知道哪些方法有作用,哪些只是徒劳。如果你真的想深入DL的学习,拥有自己的GPU是很有必要的。但你到底该选择哪种GPU呢?本文将给出一些具体的建议。在开始学习DL时,拥有一个高速的GPU
翻译
发布博客 2015.10.24 ·
1882 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Must known Tips/Tricks in Deep Neural Networks(译文)

深度神经网络(DNN),尤其是卷积神经网络(CNN),使得由多个处理层组成的运算模型可以学习到数据的多层抽象表示。这些方法极大地提高了视觉物体识别、物体探测、文本识别以及其他诸如药物发现和生物学等领域的最先进的水准。除此之外,很多关于这些主题的具有实质性内容的文章也相继发表,同时很多高质量的CNN开源软件包也被广泛传播。当然也出现了很多有关CNN的教程和CNN软件使用手册。但是,唯一缺少的可能是一个
翻译
发布博客 2015.10.21 ·
3006 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

论文笔记(3)You Only Look Once:Unified, Real-Time Object Detection

本文旨在实现图像中的物体检测,和之前的R-CNN不同的是,它利用一个单一的CNN,完成了在整个图像上bounding box和类别概率的预测。这既使得它可以实现end-to-end的优化,同时也提高了框架的速度。基于R-CNN的框架,都是先利用region proposal来生成bunding-box,然后利用CNN在box中提取提取特征,再利用分类器进行分类。而且为了优化bounding-box的
原创
发布博客 2015.10.16 ·
7406 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

Batch Normalized Recurrent Neural Networks

本文探讨了BN算法在RNN中的作用。在FNN中BN的使用使得网络收敛更快,但本文实验发现,若把BN放在隐含层之间,并不能提高收敛速度,而将其放在输入层和隐含层之间时可以加速收敛,但泛化能力并未得到提高。我们先来看看文中提及的一些知识点。 RNN在语音识别、机器翻译、语言建模等方面得到广泛应用,而针对RNN中的梯度消失问题又提出了其升级版LSTM。现在常见的RNN结构是stacked型,但训练深层网
原创
发布博客 2015.10.10 ·
1564 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多