Paper read weekly(Four)

9月来了。

时光匆匆,洗去总是铅华,越淘越闪光的那就是真心了。

前段时间关注了诸如Unet/hourglass,很重要的insight就是网络对称、网络设计成块以及块的堆叠。但简单的堆叠并不work。
这周读的paper是《Stacked Deconvolutional Network for Semantic Segmentation》,有如下的contribution:

  • Densenet+stacked-hourglass的结合,在堆叠网络之前用一个较深的网络做特征提取器。一方面可以在既有的预训练模型上进行finetune,一方面使得特征的提取更加的有效;

  • skip connection的升级——不仅仅在块内做skip connection的操作,而且还有块间的skip connection。同时靠近输入端的特征提取器的底层特征也会根据相应输出尺寸和后续的堆叠块的对应尺寸大小的feature map做融合;

  • inertmediate loss的运用——分为两种情况:

    • end-to-end——堆叠块的特点在于,每个块都会有一个预测输出,这些输出都可以拿来和ground truth做loss,所有loss加在一起,抑或加权加在一起,和final predicted output的loss一起bp,更新网络。

    • 分级递进训练——即先训练好前端的网络,然后固定训练好的网络,接着训练后边的网络。

接着就来看看这篇paper的样子啦。网络结构如下:用DenseNet161做第一个Stakced Deconvolutional Network(SDN)的encoder;后续的encoder和decoder分别是downsampling block和deconvolution block;然后就是skip connection的了,看示意图就很明显了。

这里写图片描述

这其中重复利用的块就是encoder和decoder。他们包含的基本层有maxpooling(deconvolution)/conv/compression。其中的pooling/deconv层后会融合前边的densenet和SDN的特征,而单个SDN里也会有skip connection。

这里写图片描述

最重要的是在每个compression层会做intermediate loss。而这个loss虽然是简单的cross-entropy loss,但值得注意的loss的变量项却有所不同,因为loss的变量项也借鉴了feature map fusion,会fusion前边块的predicted output,一起做loss。厉害了吧。。。

这里写图片描述

像这种不同网络的融合和网络块的堆叠思想还是很值得借鉴的,但end-to-end的方法还是有些粗暴,网络训练策略的选择也会更困难。所以,分级递进训练更值得尝试吧。


又看到丫头姐姐刚出生不久的小公举了。不到半个月,小宝贝变化好大:水汪汪的大眼睛眨起来超有爱;熟睡的样子也特安静听话,真好~

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值