AI 正在吞噬软件:软件产业的智能化范式转换

46e43fde4da38ba32412c6ed202cb8a1.gif

作者 | 李建忠

出品丨《新程序员》编辑部

9f0fdf068d6acf94e8a1816d743e1ddf.png

受邀为《新程序员007:大模型时代的开发者》撰写卷首语,在此提前与大家分享出来。

大约十年前,网景创始人、硅谷著名投资家马克·安德森曾提出一个广为流传的说法:“软件正在吞噬世界”。如果将今天大模型引领的 AI 革命,放诸于软件产业来看,一幅全新的画卷正扑面而来:“AI 正在吞噬软件”­­­。

“吞噬”是一个形象的说法,从根本上来说,软件产业正在开启一场由大模型驱动的智能化范式转换。我将这样的范式转换归纳为三个层次:计算范式、开发范式、和交互范式。

802e33972d938002c72b5d21c2a64d32.png

计算范式

我们知道,最早的计算范式来自 1936 年图灵在论文《论可计算数及其在判定问题上的应用》提出的图灵机理论模型,到 1946 年第一台电子计算机 ENIAC 被发明出来后,冯·诺伊曼又提出沿用至今的“冯·诺伊曼计算机体系架构”。冯·诺伊曼体系架构可以说是图灵机模型的实现,开启了延续至今的经典计算范式。

经典计算范式的核心是以 CPU 为中心、顺序执行、以结构化数据为主的,围绕对信息的“存取、计算到显示”进行的“确定性计算”的检索模型。而大模型则开启了我称之为 “神经网络计算范式”的转换,其核心是以 GPU 为中心、并行执行、以自然语言和视觉数据为主,围绕对知识的“学习、预测到生成”而进行的“概率性计算”的生成模型。

在未来 10-20 年,随着各类应用向生成模型的大迁移,以“神经网络计算架构”为核心的计算范式将占主导地位。这将为整个计算产业的技术栈带来巨大的变化,其广度和深度都要远超从单机时代到互联网时代的计算范式转换。

96c9c81c67eecdbb9a9a78e83ddfb736.png

开发范式

大模型在软件代码和相关文档方面的生成和分析能力,将为软件开发活动本身带来范式转换,这个转换将涵盖软件开发的各个环节:需求分析、软件设计、代码编写、开发者测试、代码评审、重构、整洁代码、缺陷调试等等。以“提示工程”为主的自然语言编程逐步替代严肃的程序语言编程是一个显而易见的趋势。GitHub CEO Thomas Dohmke 预测,未来 5 年内,80%的代码将由大模型自动生成。

当然,代码生成并非软件开发的全部,目前的很多软件项目实践都表明大模型在细颗粒度、抽象层次较低的任务上,表现较好;但在大颗粒度、抽象层次较高的任务上,表现较差。而大颗粒度、高抽象的设计才是软件开发中核心的核心——抵抗软件的复杂性。面向对象大师 Grady Booch 在谈到自然语言编程时,也鲜明地指出“整个软件工程的历史就是不断提升抽象层次”,大模型也必将加速这一趋势。

未来,程序员最重要的技能要聚焦在抽象层次较高的任务,如:需求分析、领域建模、架构设计、接口设计等;而具体的详细设计、类型实现、函数实现、算法实现、单元测试等抽象层次较低的任务则主要交由大模型来完成。这将带来一系列软件开发工具链和技能的大转移。

另外,由于自然语言编程的低门槛,未来的软件将支持用户使用大模型,自主在现有软件基础上实现灵活扩展。就像面向对象和交互设计之父 Alan Kay 最早的预言“未来将像编辑文档一样编辑我们的工具”。未来的软件形态将从今天的标准固态软件,逐步演化为用户共创的“可塑软件”。

c2e532fd04b641214d31046df3401ab5.png

交互范式

我们知道人机界面交互一直是计算产业的源发性变革力量。从最早的控制台用户界面(CUI),到后来 PC 开启的图形用户界面(GUI),再到智能手机开启的触控用户界面(TUI),每一次人机交互革命,都会将计算的潜力释放到更广泛的人类,惠及到人类生活的每一个角落。比尔盖茨在“The Age of AI has begun”文章中,对 ChatGPT 的主要评价便是“自 GUI 图形用户界面以来最大的革命”。

人与机器的无缝交互一直是计算机产业的终极梦想,而大模型支持的自然语言交互(LUI)无疑是该梦想的最佳践行力量。当然自然语言交互并非未来人机交互的全部。自然语言交互、手势交互、图形交互将协同向计算机发出命令。

如果仅仅将 LUI 看作是向计算机发出命令的替代,未免过于狭隘。LUI 推动的交互革命会引发更多累加效应。首先, LUI 会逐步拆掉孤立应用间的壁垒:未来应用的边界会被打破,应用的第一入口将不再是一个个孤立的 GUI 应用,而是无形的、随时响应的 LUI,和其背后无缝集成的各种服务。其次,LUI 还将大幅缩短应用内交互流程的繁琐步骤。砍掉传统结构化输入输出的很多中间环节(比如菜单、按钮、导航、链接、表单等),自然语言转换为结构化输入,直接返回结果。应用服务化将是 LUI 交互革命带来的一个巨大变迁。

综上所述,这是一场深入到软件产业各个层次的智能化范式转换,这场前所未有的范式转换必将深刻影响未来每一个程序员、每一个软件企业。我相信 AI 给程序员带来的是升维,而非淘汰;未来,每一个程序员都是 AI 程序员。《新程序员》也在全力以赴积极拥抱这场史诗级的变革,赋能每一个程序员和软件企业。

abdc630f79f8106cb381b8eae7c56299.gif

订阅推荐

本文精选自《新程序员 007:大模型时代的开发者》,《新程序员 007》聚焦开发者成长,其间既有图灵奖得主 Joseph Sifakis、前 OpenAI 科学家 Joel Lehman 等高瞻远瞩,又有对于开发者们至关重要的成长路径、工程实践及趟坑经验等,目前已上架小程序,欢迎所有开发者朋友们点击订阅。

fb2ab0a89d5549d8d9bb83dc32ce0408.jpeg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
百度联合清华大学发布了《产业智能化白皮书——人工智能产业化发展地形初现端倪》(以下简称《白皮书》)。 据了解,这份长80页、两万余字的《白皮书》,全面阐述了对产业智能化的战略思考和商业实践方法论,全书分为研究篇和商业实践篇两大部分,实践篇调研了人工智能走出实验室后的产业应用,展现了AI技术与产业的融合程度。 研究篇:人工智能产业化成熟度研究报告 1、人工智能概述:从实验室到产业应用 从20世纪50年代起,人工智能的方法、研究路径经历了好几次重大变化,行业发展也经历了好几次兴衰循环。当前新一轮快速发展,人工智能正从实验室走向广泛的产业应用。 当前人工智能技术在很多产业和领域中已经得到广泛应用,人工智能产业化发展的地形已经初现端倪。 从产业角度看,人工智能技术按照结构划分为基础层、算法层、技术 层和应用层。 当前人工智能发展浪潮主要有4个驱动因素: 1.全球数据量爆发性增长 2.计算能力提升 3.算法的进步 4.政策支持、科技巨头和资本追逐 中美两国是人工智能发展最领先的国家,也是推动人工智能产业化最活跃的国家。人工智能技术的产业化将是中国的重要机遇。AI技术在医疗健康、金融、商业、教育、工业和安防 各个领域得到越来越多的广泛应用。中国巨大的市场,人工智能有着异常丰富的应用前景。 2、TUMC模型:新兴技术产业化成熟度的评估框架 目前,人工智能的增长不断加速,正在逼近产业化应用爆发的“临界点”。衡量人工智能技术的产业化成熟度,无论对于企业家、研究者还是国家相关 产业政策的制定者都具有重要意义。 TUMC模型是一个基于战略节奏理论,从产业演进视角研究新产业成熟度和新兴技术产业化成熟度的工具。 战略节奏理论将产品市场的发展分为小众市场、大众市场、分众市场和杂合市场4个阶段。TUMC模型将AI技术应用的研究焦点放在“尚未进入小众市场”到“即将开启大众市场”的阶段上。 TUMC模型综合考察技术、用户效用、市场以及产业链4个维度: 1.技术:实现商业化的性能阈值 2.用户效用:特定场景中的特定价值 3.市场:市场起飞的关键规模 4.产业链:新的分工协作系统

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值