【AI】一文介绍索引增强生成RAG的原理和结构

158 篇文章 25 订阅 ¥49.90 ¥99.00
本文介绍了RAG(检索增强生成模型)在企业知识库问答中的优势和结构。RAG避免了长时间的训练过程,能即时响应知识库更新,并提供可溯源的答案。它由LLM(大型语言模型)和向量数据库组成,其中LLM作为人机交互媒介,向量数据库负责文本的向量化和联想索引。此外,文章还讨论了Langchain框架在构建AI服务中的作用。
摘要由CSDN通过智能技术生成

今天向大家介绍一下关于RAG的一些知识和经验。
这里说的RAG可以理解为目前针对企业知识库问答等AI应用场景的解决方案,这个场景就是利用自然语言大模型LLM与用户自有的文件进行对话的能力。

【RAG的优势】

首先,讲一讲RAG的优势特征。
如果把AI想象成一个待上岗的人类助手,让这个助手成功帮你做事存在两种方法。
第一种,把你公司的所有业务都让他认真学习,效果是这些知识会真正进入这个助手的大脑,这些知识会被学得,反映到AI,就是FineTuning的过程中,供AI学习的素材会影响这个AI的内部参数。使得在训练成功后这个AI不需要查阅原本的文档就能够根据他目前的综合理解回答你的问题,因为这个AI已经学会了。
这种学习训练的应用方法的缺点也很明显,AI受到的影响是黑盒,用户无法完全把控,只能对结果事后审核。训练过程费时费力,需要高性能的硬件支撑训练过程,成本很高。后续如果有新的知识,那么这个高成本的训练过程也需要持续进行。
第二种方法,就是让助手本身具备正常沟通的能力,接下来需要什么材料,让助手找给你就行了。最多再根据他的CommonSense做一些整理。结论的来源也都会给你标出出处。这就是RAG的模式。LLM只是沟通媒介,AI并没有去真正学习后台向量库的知识,只是把这些知识找到并简单整理。
RAG在企业知识库场景下的优势很明显,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每日出拳老爷子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值