统计自然语言处理基础学习笔记(4)——语义消除歧义

本文介绍了统计自然语言处理中语义消除歧义的重要性及三种方法:有监督消歧、基于词典的消歧和无监督消歧。有监督消歧依赖标注训练集,如贝叶斯分类和信息论;基于词典的消歧利用词典资源,如语义定义和类义词典;无监督消歧则在未标注文本中进行聚类分析,适合发现细微语义差异,但可能难以处理不常见用法。
摘要由CSDN通过智能技术生成

我们知道很多词语都有很多意思或语义,而在具体的语境中,词语有某种特定的意思。而独立于上下文来考虑词语意思,语义一般都会出现语义歧义。统计自然语言处理不得不考虑如何消除歧义问题。

消除歧义的任务就是确定一个多义词在一个特定的语境中使用哪一种语义。通过考虑词汇使用的上下文完全可以确定其具体的语义。那么如何确定一个词汇具有的语义,以及从这些语义确定某一种具体的语义呢?

         比较简单的方法是从一部词典中给出某个词汇的定义确定该词汇具有的语义。但对于大部分词汇来说,他们的语义和用法并不是简简单单能够根据词典中的定义来列出,词典中列出的语义之间有一些是可以清晰分辨的内容,但大部分内容都是不确定的,并且是混合在一起的。而更难的一点是,词典中每个词汇只能列出一定数量的语义,而该词汇在实际的语境中定义的语义不一定能够从词典中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值