位温的推导

理想气体方程

单位摩尔质量
p V = R T pV = R T pV=RT

热力学第一定律

单位质量绝热过程的能量守恒关系为:

d Q = c v d T + p d V d Q = c p d T − V d p \begin{align} dQ &= c_v dT + pdV \\ dQ &= c_p dT -Vdp \\ \end{align} dQdQ=cvdT+pdV=cpdTVdp

  • c p d T c_p dT cpdT 空气团在恒压下温度变化所需的热量;
  • V d p Vdp Vdp 空气团在体积变化时(膨胀或压缩)做的功。

对于绝热过程,热量变化 ( dQ = 0 ),因此可以写成:
c p d T = − V d p c_p dT =-Vdp cpdT=Vdp
将理想气体方程 p V = R T pV = R T pV=RT 代入其中,得到:
c p T d T = − R p d p \frac{c_p}{T} dT = -\frac{R}{p} dp TcpdT=pRdp
对上式进行积分,假设空气团从当前的气压 ( p ) 移动到一个标准气压( p 0 p_0 p0)(通常取为 1000 hPa):
∫ T θ c p T d T = − ∫ p 0 p R p d p \int_{T}^{\theta} \frac{c_p}{T} dT = -\int_{p_0}^{p} \frac{R}{p} dp TθTcpdT=p0ppRdp
积分之后,我们得到:
c p ln ⁡ ( θ T ) = R ln ⁡ ( p 0 p ) c_p \ln(\frac{\theta}{T}) = R \ln\left(\frac{p_0}{p}\right) cpln(Tθ)=Rln(pp0)
将上式整理后,我们得到位温的表达式:
θ = T ( p 0 p ) R c p \theta = T \left(\frac{p_0}{p}\right)^{\frac{R}{c_p}} θ=T(pp0)cpR

物理解释

  • 位温 是一个在大气绝热过程中守恒的变量,因此在分析大气对流和稳定性时非常有用。位温越高,意味着空气团的热力学状态越不稳定。
  • 空气团在上升或下降过程中,由于压力变化,温度会随之变化,但位温保持不变。
  • 在干绝热条件下,位温用于比较不同高度或不同地区空气团的热力学状态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值