理想气体方程
单位摩尔质量
p
V
=
R
T
pV = R T
pV=RT
热力学第一定律
单位质量绝热过程的能量守恒关系为:
d Q = c v d T + p d V d Q = c p d T − V d p \begin{align} dQ &= c_v dT + pdV \\ dQ &= c_p dT -Vdp \\ \end{align} dQdQ=cvdT+pdV=cpdT−Vdp
- c p d T c_p dT cpdT 空气团在恒压下温度变化所需的热量;
- V d p Vdp Vdp 空气团在体积变化时(膨胀或压缩)做的功。
对于绝热过程,热量变化 ( dQ = 0 ),因此可以写成:
c
p
d
T
=
−
V
d
p
c_p dT =-Vdp
cpdT=−Vdp
将理想气体方程
p
V
=
R
T
pV = R T
pV=RT 代入其中,得到:
c
p
T
d
T
=
−
R
p
d
p
\frac{c_p}{T} dT = -\frac{R}{p} dp
TcpdT=−pRdp
对上式进行积分,假设空气团从当前的气压 ( p ) 移动到一个标准气压(
p
0
p_0
p0)(通常取为 1000 hPa):
∫
T
θ
c
p
T
d
T
=
−
∫
p
0
p
R
p
d
p
\int_{T}^{\theta} \frac{c_p}{T} dT = -\int_{p_0}^{p} \frac{R}{p} dp
∫TθTcpdT=−∫p0ppRdp
积分之后,我们得到:
c
p
ln
(
θ
T
)
=
R
ln
(
p
0
p
)
c_p \ln(\frac{\theta}{T}) = R \ln\left(\frac{p_0}{p}\right)
cpln(Tθ)=Rln(pp0)
将上式整理后,我们得到位温的表达式:
θ
=
T
(
p
0
p
)
R
c
p
\theta = T \left(\frac{p_0}{p}\right)^{\frac{R}{c_p}}
θ=T(pp0)cpR
物理解释
- 位温 是一个在大气绝热过程中守恒的变量,因此在分析大气对流和稳定性时非常有用。位温越高,意味着空气团的热力学状态越不稳定。
- 空气团在上升或下降过程中,由于压力变化,温度会随之变化,但位温保持不变。
- 在干绝热条件下,位温用于比较不同高度或不同地区空气团的热力学状态。