论文复现《Effective Adversarial Regularization for Neural Machine Translation》

本文介绍了复现《Effective Adversarial Regularization for Neural Machine Translation》的过程,主要关注在PyTorch上的实现,包括word embedding的扰动和loss函数的调整。在word embedding部分,通过添加扰动项改进了输入表示;在loss部分,采用了双重损失函数求和的方式。此外,还分享了裁剪数据以加速调试、以及在PyTorch中使用特定API的技巧。
摘要由CSDN通过智能技术生成

复现论文《Effective Adversarial Regularization for Neural Machine Translation》,遇到的一些pytorch的技巧(坑),总结一下。

原文是基于另一个库Chainer实现的,我在fairseq框架上加以复现,基于pytorch >= 1.0

论文中主要用公式来介绍主要思想,主要集中在word embedding和loss部分的修改:

  1. word embedding部分主要是使原本的 e = E ( x ) e = E(x) e=E(x),变成了 e = E ( x ) + r ^ e = E(x)+\hat{r} e=E(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值