pytorch学习笔记4

开启tensorboard
在terminal中输入tensorboard --logdir=文件名 文件名中不能含有空格

tensorboard --logdir=logs --port=6007#将端口调整为6007
tensorboard --logdir=logs --port 0 自动分配一个端口,成功访问

打开的时候如果发现没数据可以把logs换成文件夹的绝对路径
打开时发现有多条线的检查一下是不是文件夹下面有多个文件

def add_scalar(
        self,
        tag,
        scalar_value,
        global_step=None,
        walltime=None,
        new_style=False,
        double_precision=False,
    ):

scalar_value (float或string/blobname):要保存的值,也就是x轴
global_step (int):记录的全局步长值,也就是y轴
标签(label)、值(value)和步数(step)。
在这个例子中,循环从0到99,对于每个i值,它会将两个值传递给add_scalar方法。第一个值是2i,第二个值是i。这意味着在TensorBoard中,我们会有一个以步数i为x轴、以2i为y轴的数据点。

writer中写入一些新的事件,他也计入了上一个事件当中,导致图像错乱
例如,先写入

from torch.utils.tensorboard import SummaryWriter

writer=SummaryWriter('logs')#创建了一个用于记录训练过程的 SummaryWriter 对象,并指定了日志文件的保存路径为 'logs'
for i in range(100):
    writer.add_scalar('y=2x',2*i,i)
writer.close()

不改变名称再写入

from torch.utils.tensorboard import SummaryWriter

writer=SummaryWriter('logs')#创建了一个用于记录训练过程的 SummaryWriter 对象,并指定了日志文件的保存路径为 'logs'
for i in range(100):
    writer.add_scalar('y=2x',3*i,i)
writer.close()

你就会得到一幅错乱的图像
在这里插入图片描述
这个时候建议把多的文件删了,然后重跑
这个图像是用来看训练效果的

 def add_image(
        self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"
    ):

这个函数在官方给出的只有

 img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data

以上几种类型可以使用
因此我用PIL读取数据后,使用numpy.array()函数转化类型

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter('logs')
image_path=r'D:\python practice demo\pythonProject4\hymenoptera_data\train\ants\0013035.jpg'
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
writer.add_image('test',img_array,1,dataformats='HWC')#表示这是三通道
for i in range(100):
    writer.add_scalar('y=x',i,i)
writer.close()

在这里插入图片描述

torchvision中的transforms主要是对图片进行一些变换。
tranforms对应 tranforms.py 文件,里面定义了很多类,输入一个图片对象,返回经过处理的图片对象。

三、常见的Transforms
常用的输入图片对象的数据类型

PIL : Image.open()
tensor : ToTensor()
ndarrays: cv.imread()
常用的Transform有:

ToTensor() :将图片对象类型转为 tensor
Normalize() :对图像像素进行归一化计算
Resize():重新设置 PIL Image的大小,返回也是PIL Image格式
Compose(): 输入为 transforms类型参数的列表,即

Compose([transforms参数1, transforms参数2], ...)

目的是将几个 transforms操作打包成一个,比如要先进行大小调整,然后进行归一化计算,返回tensor类型,则可以将 ToTensor、Normalize、Resize,按操作顺序输入到Compose中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值