卫星轨道总结

闲来无事,翻了翻卫星轨道推导,总结下。

首先,列出几个重要的等式,轨道表达式,能量守恒与动量守恒。
简单设定卫星质量为单位质量m=1,中心天体质量为 M M M,卫星轨道在一个在一个平面上,轨道曲线可以表示为:
r ( t ) ⃗ = ρ ( θ ( t ) ) cos ⁡ ( θ ( t ) ) e ⃗ 1 + ρ ( θ ( t ) ) sin ⁡ ( θ ( t ) ) e ⃗ 2 ( 1 ) \vec{r(t)}=\rho(\theta(t))\cos(\theta(t))\vec e_1+\rho(\theta(t))\sin(\theta(t))\vec e_2 \quad\quad (1) r(t) =ρ(θ(t))cos(θ(t))e 1+ρ(θ(t))sin(θ(t))e 2(1)
e 1 , e 2 e_1,e_2 e1,e2是两个相互正交的单位向量,轨道方程可以简记为:
r ⃗ = ρ cos ⁡ ( θ ) e ⃗ 1 + ρ sin ⁡ ( θ ) e ⃗ 2 \vec{r}=\rho\cos(\theta)\vec e_1+\rho\sin(\theta)\vec e_2 r =ρcos(θ)e 1+ρsin(θ)e 2
则其速度可以表示如下:
v ⃗ = r ˙ ⃗ = d r ⃗ / d t = [ ρ ˙ cos ⁡ ( θ ) − ρ sin ⁡ ( θ ) ) ] θ ˙ e ⃗ 1 + [ ρ ˙ sin ⁡ ( θ ) + ρ cos ⁡ ( θ ) ] θ ˙ e ⃗ 2 ( 2 ) \vec {v}=\vec{\dot{r}} =\vec {dr}/dt=[\dot\rho\cos(\theta)-\rho\sin(\theta))]\dot\theta \vec e_1+[\dot\rho\sin(\theta)+\rho\cos(\theta)]\dot\theta \vec e_2 \quad\quad (2) v =r˙ =dr /dt=[ρ˙cos(θ)ρsin(θ))]θ˙e 1+[ρ˙sin(θ)+ρcos(θ)]θ˙e 2(2)
根据机械能守恒可以得到( E E E代表总机械能密度,即单位卫星质量的机械能,取无穷远处重力势能为零):
E = 0.5 r ˙ ⋅ r ˙ − G M ρ = 0.5 ( ρ ˙ 2 + ρ 2 ) θ ˙ 2 − G M ρ ( 3 ) E = 0.5\dot{r}\cdot \dot r-\frac{GM}{\rho} =0.5(\dot\rho^2+\rho^2)\dot\theta^2-\frac{GM}{\rho}\quad\quad (3) E=0.5r˙r˙ρGM=0.5(ρ˙2+ρ2)θ˙2ρGM(3)
动量矩守恒( H H H代表总动量矩密度,即单位卫星质量的动量矩):
H ⃗ = v ⃗ × r = ρ 2 θ ˙ e ⃗ 1 × e ⃗ 2 ⇒ ρ 2 θ ˙ ≡ h ( 4 ) \vec H=\vec {v}\times r=\rho^2\dot\theta \vec e_1\times \vec e_2 \quad \Rightarrow \rho^2\dot\theta \equiv h \quad\quad (4) H =v ×r=ρ2θ˙e 1×e 2ρ2θ˙h(4)

接着,可以求解轨道方程与参数
结合能量守恒与动量守恒可得:
E = 0.5 ( ρ ˙ 2 + ρ 2 ) ( h ρ 2 ) 2 − G M ρ = h 2 2 ( ρ ˙ 2 + ρ 2 ) / ρ 4 − G M ρ ( 5 ) E =0.5(\dot\rho^2+\rho^2)(\frac{h}{\rho^2})^2-\frac{GM}{\rho} =\frac{h^2}{2}(\dot\rho^2+\rho^2)/\rho^4-\frac{GM}{\rho} \quad\quad (5) E=0.5(ρ˙2+ρ2)(ρ2h)2ρGM=2h2(ρ˙2+ρ2)/ρ4ρGM(5)
下面求解轨道方程,令
ρ = 1 u → ρ ˙ = − u ˙ u 2 \rho=\frac{1}{u}\rightarrow \dot\rho=\frac{-\dot u}{u^2} ρ=u1ρ˙=u2u˙,则有:
E = h 2 2 ( u ˙ 2 + u 2 ) − G M u ( 6 ) E=\frac{h^2}{2}(\dot u^2+u^2)-GMu \quad\quad (6) E=2h2(u˙2+u2)GMu(6)

两边对微分得到: 0 = h 2 ( u ˙ u ¨ + u u ˙ ) − G M u ˙ = u ˙ ( h 2 ( u ¨ + u ) − G M ) 0=h^2(\dot u\ddot u+u\dot u)-GM\dot u=\dot u(h^2(\ddot u+u)-GM) 0=h2(u˙u¨+uu˙)GMu˙=u˙(h2(u¨+u)GM)

所以有: u ˙ = 0 或 者 h 2 ( u ¨ + u ) − G M = 0 ( 7 ) \dot u=0\quad 或者 \quad h^2(\ddot u+u)-GM=0\quad\quad (7) u˙=0h2(u¨+u)GM=0(7)

其中: u ˙ = 0 ⇒ u = u 0 ⇒ ρ = ρ 0    \dot u=0 \Rightarrow u=u_0 \Rightarrow \rho=\rho_0 \; u˙=0u=u0ρ=ρ0是圆轨道。或者 h 2 ( u ¨ + u ) − G M = 0 h^2(\ddot u+u)-GM=0 h2(u¨+u)GM=0
求解得到: u = c sin ⁡ ( θ + θ 0 ) + G M h 2 \quad u=c\sin(\theta+\theta_0)+\frac{GM}{h^2} u=csin(θ+θ0)+h2GM
所以有: ρ = h 2 G M 1 1 + ϵ sin ⁡ ( θ + θ 0 ) ϵ = c h 2 G M ( 8 ) \rho=\frac{h^2}{GM}\frac{1}{1+\epsilon\sin(\theta+\theta_0)} \quad \epsilon=c\frac{h^2}{GM} \quad\quad (8) ρ=GMh21+ϵsin(θ+θ0)1ϵ=cGMh2(8)
可以看出(8)是圆锥曲线轨道。

下面推导 ϵ \epsilon ϵ的表达式.

结合能量守恒(4)与轨道方程(8)有:
E = h 2 2 ( u ˙ 2 + u 2 ) − G M u = h 2 2 ( c 2 c o s 2 ( θ + θ 0 ) + ( c sin ⁡ ( θ + θ 0 ) + G M h 2 ) 2 ) − G M c sin ⁡ ( θ + θ 0 ) − ( G M h ) 2 = h 2 2 ( c 2 + ( G M ) 2 h 4 + 2 c sin ⁡ ( θ + θ 0 ) G M h 2 ) − G M c sin ⁡ ( θ + θ 0 ) − ( G M h ) 2 = h 2 2 c 2 − ( G M ) 2 2 h 2 c 2 = 2 E h 2 + ( G M ) 2 h 4 ⇒ ϵ 2 = ( c h 2 G M ) 2 = 2 E h 2 ( G M ) 2 + 1 \begin{array}{ll} E & =\frac{h^2}{2}(\dot u^2+u^2)-GMu\\ &=\frac{h^2}{2}\bigg(c^2cos^2(\theta+\theta_0)+\big(c\sin(\theta+\theta_0)+\frac{GM}{h^2}\big)^2\bigg)-GMc\sin(\theta+\theta_0)-(\frac{GM}{h})^2 \\ &=\frac{h^2}{2}\bigg(c^2+\frac{(GM)^2}{h^4}+2c\sin(\theta+\theta_0)\frac{GM}{h^2}\bigg)-GMc\sin(\theta+\theta_0)-(\frac{GM}{h})^2\\ &=\frac{h^2}{2}c^2-\frac{(GM)^2}{2h^2} \\ c^2&=\frac{2E}{h^2}+\frac{(GM)^2}{h^4}\Rightarrow \epsilon^2=(c\frac{h^2}{GM})^2=\frac{2Eh^2}{(GM)^2}+1 \end{array} Ec2=2h2(u˙2+u2)GMu=2h2(c2cos2(θ+θ0)+(csin(θ+θ0)+h2GM)2)GMcsin(θ+θ0)(hGM)2=2h2(c2+h4(GM)2+2csin(θ+θ0)h2GM)GMcsin(θ+θ0)(hGM)2=2h2c22h2(GM)2=h22E+h4(GM)2ϵ2=(cGMh2)2=(GM)22Eh2+1

选取适当的坐标系,以中心天体位置为原点,近日点为角度 θ = 0 \theta=0 θ=0,可以将轨道方程统一为:
ρ = h 2 G M 1 1 + ϵ cos ⁡ θ , ϵ = 2 E h 2 ( G M ) 2 + 1 ( 10 ) \rho=\frac{h^2}{GM}\frac{1}{1+\epsilon\cos\theta} \quad,\epsilon=\sqrt{\frac{2Eh^2}{(GM)^2}+1}\quad\quad (10) ρ=GMh21+ϵcosθ1,ϵ=(GM)22Eh2+1 (10)

最后,讨论轨道类型与常见参数
从(10)式可以看出:

ϵ = 0 \epsilon=0 ϵ=0时,有 r ≡ ρ = h 2 G M = − G M 2 E r \equiv\rho=\frac{h^2}{GM} =-\frac{GM}{2E} rρ=GMh2=2EGM是圆周运动,有根据(4)可以知道角速度为 r 2 θ ˙ = h → ω ≡ θ ˙ = ( G M ) 2 h 3 = ( − 2 E ) 1.5 G M r^2\dot \theta=h\rightarrow \omega\equiv\dot \theta=\frac{(GM)^2}{h^3}=\frac{(-2E)^{1.5}}{GM} r2θ˙=hωθ˙=h3(GM)2=GM(2E)1.5是匀速圆周运动。周期为: T ≡ 2 π / ω = 2 π G M ( − 2 E ) 1.5 = 2 π ( G M ) 2 ( − 2 E ) 3 = 2 π r 3 G M T\equiv2\pi/\omega=2\pi\frac{GM}{(-2E)^{1.5}}=2\pi\sqrt{\frac{(GM)^2}{(-2E)^{3}}}=2\pi\sqrt{\frac{r^3}{GM}} T2π/ω=2π(2E)1.5GM=2π(2E)3(GM)2 =2πGMr3
此时有,任意一点速率 v = G M / l v=\sqrt{GM/l} v=GM/l l l l是该点到中心天体的距离。设 R R R是中心天体的半径, v = G M / R v=\sqrt{GM/R} v=GM/R 是该中心天体的第一宇宙速度。

ϵ = 1 \epsilon=1 ϵ=1时,可得到 E = 0 E=0 E=0此时卫星刚刚可以逃逸出中心天体,轨道是抛物线,此时并非周期轨道,可得到近日点距离是 l ≡ ρ ∣ θ = 0 = h 2 2 G M l \equiv\rho|_{\theta=0}=\frac{h^2}{2GM} lρθ=0=2GMh2,焦半径是 r ≡ ρ ∣ θ = 0.5 π = h 2 G M r \equiv\rho|_{\theta=0.5\pi}=\frac{h^2}{GM} rρθ=0.5π=GMh2,此时必有轨道上任意一点的速率: v = 2 G M / l v =\sqrt{2GM/l} v=2GM/l , l l l是卫星与中心天体的距离;所以任何中心天体的逃逸速度为 v = 2 G M / R v=\sqrt{2GM/R} v=2GM/R R R R是中心天体的半径。

ϵ > 1 \epsilon>1 ϵ>1时,可得到 E > 0 E\gt 0 E>0此时卫星必然逃逸出中心天体,轨道是双曲线。此时任意一点的速率 v > 2 G M / l v \gt \sqrt{2GM/l} v>2GM/l l l l是卫星与中心天体的距离。

0 &lt; ϵ &lt; 1 0&lt;\epsilon&lt;1 0<ϵ<1时,可得到 E &lt; 0 E&lt;0 E<0,此时卫星无法逃逸,被中心天体捕获,轨道是椭圆。
此时,长半轴 a a a,短半轴 p p p,焦半径 p p p分别为:
a = h 2 2 G M ( 1 1 + ϵ + 1 1 − ϵ ) = − G M 2 E b 2 = 2 a ∗ h 2 2 G M = − h 2 E p = h 2 G M \begin{array}{lll} a &amp; =\frac{h^2}{2GM}\bigg(\frac{1}{1+\epsilon}+\frac{1}{1-\epsilon}\bigg)&amp;=-\frac{GM}{2E}\\ b^2&amp;=2a*\frac{h^2}{2GM}&amp;=-\frac{h^2}{E}\\ p&amp;=\frac{h^2}{GM} \end{array} ab2p=2GMh2(1+ϵ1+1ϵ1)=2a2GMh2=GMh2=2EGM=Eh2
下面求运动周期,根据(4)式有 ρ 2 θ ˙ = h \rho^2\dot\theta=h ρ2θ˙=h,得到: ∫ 0 T ρ 2 θ ˙ d t = ∫ 0 2 π ρ 2 d θ = ∫ 0 T h d t = h T \int_0^T\rho^2\dot\theta dt =\int_0^{2\pi}\rho^2d\theta =\int_0^Thdt=hT 0Tρ2θ˙dt=02πρ2dθ=0Thdt=hT
因此有:
h T = 2 π a b h 2 T 2 = 4 π 2 a 2 b 2 = − 4 π 2 ( G M h ) 2 E 3 T 2 = − 4 π 2 ( G M ) 2 E 3 = 4 π 2 a 3 G M T = 2 π a 3 G M \begin{array}{lll} hT&amp;=2\pi ab\\ h^2T^2&amp;=4\pi^2a^2b^2 &amp;=-4\pi^2\frac{(GMh)^2}{E^3}\\ T^2&amp;=-4\pi^2\frac{(GM)^2}{E^3}&amp;=4\pi^2\frac{a^3}{GM}\\ T&amp;=2\pi\sqrt{\frac{a^3}{GM}} \end{array} hTh2T2T2T=2πab=4π2a2b2=4π2E3(GM)2=2πGMa3 =4π2E3(GMh)2=4π2GMa3
可以看到任何一个中心天体周围的椭圆轨道,长半轴、周期只与机械能有关,并且长半轴与周期的表达式与圆轨道一致,因此判定同一个中心天体上不同卫星的机械能密度,仅需观察周期即可,周期上的能量高,同周期必有相同的能量密度与长半轴。而短轴、偏心率还有焦半径与动量矩密度有关。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值