闲来无事,翻了翻卫星轨道推导,总结下。
首先,列出几个重要的等式,轨道表达式,能量守恒与动量守恒。
简单设定卫星质量为单位质量m=1,中心天体质量为 M M M,卫星轨道在一个在一个平面上,轨道曲线可以表示为:
r ( t ) ⃗ = ρ ( θ ( t ) ) cos ( θ ( t ) ) e ⃗ 1 + ρ ( θ ( t ) ) sin ( θ ( t ) ) e ⃗ 2 ( 1 ) \vec{r(t)}=\rho(\theta(t))\cos(\theta(t))\vec e_1+\rho(\theta(t))\sin(\theta(t))\vec e_2 \quad\quad (1) r(t)=ρ(θ(t))cos(θ(t))e1+ρ(θ(t))sin(θ(t))e2(1)
e 1 , e 2 e_1,e_2 e1,e2是两个相互正交的单位向量,轨道方程可以简记为:
r ⃗ = ρ cos ( θ ) e ⃗ 1 + ρ sin ( θ ) e ⃗ 2 \vec{r}=\rho\cos(\theta)\vec e_1+\rho\sin(\theta)\vec e_2 r=ρcos(θ)e1+ρsin(θ)e2
则其速度可以表示如下:
v ⃗ = r ˙ ⃗ = d r ⃗ / d t = [ ρ ˙ cos ( θ ) − ρ sin ( θ ) ) ] θ ˙ e ⃗ 1 + [ ρ ˙ sin ( θ ) + ρ cos ( θ ) ] θ ˙ e ⃗ 2 ( 2 ) \vec {v}=\vec{\dot{r}} =\vec {dr}/dt=[\dot\rho\cos(\theta)-\rho\sin(\theta))]\dot\theta \vec e_1+[\dot\rho\sin(\theta)+\rho\cos(\theta)]\dot\theta \vec e_2 \quad\quad (2) v=r˙=dr/dt=[ρ˙cos(θ)−ρsin(θ))]θ˙e1+[ρ˙sin(θ)+ρcos(θ)]θ˙e2(2)
根据机械能守恒可以得到( E E E代表总机械能密度,即单位卫星质量的机械能,取无穷远处重力势能为零):
E = 0.5 r ˙ ⋅ r ˙ − G M ρ = 0.5 ( ρ ˙ 2 + ρ 2 ) θ ˙ 2 − G M ρ ( 3 ) E = 0.5\dot{r}\cdot \dot r-\frac{GM}{\rho} =0.5(\dot\rho^2+\rho^2)\dot\theta^2-\frac{GM}{\rho}\quad\quad (3) E=0.5r˙⋅r˙−ρGM=0.5(ρ˙2+ρ2)θ˙2−ρGM(3)
动量矩守恒( H H H代表总动量矩密度,即单位卫星质量的动量矩):
H ⃗ = v ⃗ × r = ρ 2 θ ˙ e ⃗ 1 × e ⃗ 2 ⇒ ρ 2 θ ˙ ≡ h ( 4 ) \vec H=\vec {v}\times r=\rho^2\dot\theta \vec e_1\times \vec e_2 \quad \Rightarrow \rho^2\dot\theta \equiv h \quad\quad (4) H=v×r=ρ2θ˙e1×e2⇒ρ2