四、统计学习理论:有界实损失函数上的大数定理

前一篇文章,介绍了指示损失函数下的机器学习ERP原则一致性的充分条件,从有限指示损失函数集推广到了无限的指示损失函数集。
本文将介绍有界实损失函数集上的一致收敛的条件。
为了区别将前文中的损失函数集记为: {Q(x;θ)|θΛ} { Q ( x ; θ ) | θ ∈ Λ }
假设样本是m维的随机变量,记:
R(θ)=RmQ(x,θ)dF(x) R ( θ ) = ∫ R m Q ( x , θ ) d F ( x )

Rexp(X,θ)=1nni=1Q(xi,θ) R e x p ( X , θ ) = 1 n ∑ i = 1 n Q ( x i , θ ) X X 代表任意一个样本集,有n个样本。

目标是分析:

P(supθΛR(θ)Rexp(X,θ)ε)n0(1) P ( s u p θ ∈ Λ ∣ R ( θ ) − R e x p ( X , θ ) ∣≥ ε ) → n → ∞ 0 ( 1 )
成立的条件。


有界实损失函数上的大数定理
先讨论实损失函数 |Q(x,θ)|<ϕ(x)< | Q ( x , θ ) | < ϕ ( x ) < ∞ 是有界实函数。
假定: aQ(x,θ)b a ≤ Q ( x , θ ) ≤ b 从新表述一下 RmQ(x,θ)dF(x) ∫ R m Q ( x , θ ) d F ( x ) :

事实上,可以假设 a=0 a = 0 ,如果 a0 ∀ a ≠ 0 ,只需变换一下损失函数: Q(x,θ)=Q(x,θ)a Q ∗ ( x , θ ) = Q ( x , θ ) − a 都有:

RmQ(x,θ)dF(x)1nk=1nQ(xk,θ)=RmQ(x,θ)dF(x)1nk=1nQ(xk,θ)=supθΛR(θ)Rexp(X,θ) | ∫ R m Q ∗ ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ∗ ( x k , θ ) | = | ∫ R m Q ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ( x k , θ ) | = s u p θ ∈ Λ ∣ R ( θ ) − R e x p ( X , θ ) ∣

因此要求 a=0 a = 0 并不是必须的。 为了方便描述,下文中假定 a=0B=ba=b a = 0 , B = b − a = b ,

从Lebesgue积分角度来看 R(θ) R ( θ ) Rexp(X,θ) R e x p ( X , θ )

RmQ(x,θ)dF(x)=limlBli=0l1P{Q(x,θ)>iBl} ∫ R m Q ( x , θ ) d F ( x ) = l i m l → ∞ B l ∑ i = 0 l − 1 P { Q ( x , θ ) > i B l }

对于 Rexp(X,θ) R e x p ( X , θ ) ,同样我们有:
1nk=1nQ(xk,θ)=limlBli=0l1v{xk:Q(xk,θ)>iBl} 1 n ∑ k = 1 n Q ( x k , θ ) = l i m l → ∞ B l ∑ i = 0 l − 1 v { x k : Q ( x k , θ ) > i B l }

因此有:

RmQ(x,θ)dF(x)1nnk=1Q(xk,θ)=limlBll1i=0(P{Q(x,θ)>iBl}v{xk:Q(xk,θ)>iBl})limlBll1i=0(P{Q(x,θ)>iBl}v{xk:Q(xk,θ)>iBl})limlBll1i=0supβ(a,b)(P{Q(x,θ)>β}v{xk:Q(xk,θ)>β})=Bsupβ(a,b)(P{Q(x,θ)>β}v{xk:Q(xk,θ)>β})=Bsupβ(a,b)(Rm1{Q(x,θ)β}dF(x)1nnk=11{Q(xk,θ)β}) | ∫ R m Q ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ( x k , θ ) | = l i m l → ∞ B l | ∑ i = 0 l − 1 ( P { Q ( x , θ ) > i B l } − v { x k : Q ( x k , θ ) > i B l } ) | ≤ l i m l → ∞ B l ∑ i = 0 l − 1 ( | P { Q ( x , θ ) > i B l } − v { x k : Q ( x k , θ ) > i B l } | ) ≤ l i m l → ∞ B l ∑ i = 0 l − 1 s u p β ∈ ( a , b ) ( | P { Q ( x , θ ) > β } − v { x k : Q ( x k , θ ) > β } | ) = B s u p β ∈ ( a , b ) ( | P { Q ( x , θ ) > β } − v { x k : Q ( x k , θ ) > β } | ) = B s u p β ∈ ( a , b ) ( | ∫ R m 1 { Q ( x , θ ) − β } d F ( x ) − 1 n ∑ k = 1 n 1 { Q ( x k , θ ) − β } | )

由此我们得到:
supθΛRmQ(x,θ)dF(x)1nnk=1Q(xk,θ)BsupθΛ;β(a,b)(Rm1{Q(x,θ)β}dF(x)1nnk=11{Q(xk,θ)β}) s u p θ ∈ Λ | ∫ R m Q ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ( x k , θ ) | ≤ B s u p θ ∈ Λ ; β ∈ ( a , b ) ( | ∫ R m 1 { Q ( x , θ ) − β } d F ( x ) − 1 n ∑ k = 1 n 1 { Q ( x k , θ ) − β } | )

将有界实函数转化到指示损失函数 I(x,θ,β)=1{Q(x,θ)β} I ( x , θ , β ) = 1 { Q ( x , θ ) − β } 上,不过增加了一个参数 β β ,根据指示损失函数上的结论,得到下面的不等式:
P(supθΛRmQ(x,θ)dF(x)1nnk=1Q(xk,θ)>ε)P(supθΛ;β(a,b)Rm1{Q(x,θ)β}dF(x)1nnk=11{Q(xk,θ)β}>εB)=P(supθΛ;β(a,b)RmI(x,θ,β)dF(x)1nnk=1I(xi,θ,β)>εB)2NΛ,β(n)eε22B2n=2exp((HΛ,βvc(n)nε22B2)n) P ( s u p θ ∈ Λ | ∫ R m Q ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ( x k , θ ) | > ε ) ≤ P ( s u p θ ∈ Λ ; β ∈ ( a , b ) | ∫ R m 1 { Q ( x , θ ) − β } d F ( x ) − 1 n ∑ k = 1 n 1 { Q ( x k , θ ) − β } | > ε B ) = P ( s u p θ ∈ Λ ; β ∈ ( a , b ) | ∫ R m I ( x , θ , β ) d F ( x ) − 1 n ∑ k = 1 n I ( x i , θ , β ) | > ε B ) ≤ 2 N Λ , β ( n ) e − ε 2 2 B 2 n = 2 e x p ( ( H v c Λ , β ( n ) n − ε 2 2 B 2 ) n )

于是有下面的定理:
定理3:在实损失函数集 |Q(x,θ)|< | Q ( x , θ ) | < ∞ 上, ε>0 ∀ ε > 0 ,期望风险和经验风险满足如下不等式:
P(supθΛRmQ(x,θ)dF(x)1nk=1nQ(xk,θ)>ε)2exp((HΛ,βvc(n)nε22B2)n) P ( s u p θ ∈ Λ | ∫ R m Q ( x , θ ) d F ( x ) − 1 n ∑ k = 1 n Q ( x k , θ ) | > ε ) ≤ 2 e x p ( ( H v c Λ , β ( n ) n − ε 2 2 B 2 ) n )

推论3:在实损失函数集 |Q(x,θ)|< | Q ( x , θ ) | < ∞ 上,统计学习机期望风险与经验风险一致双边收敛的充分条件是:
limnHΛ,βvc(n)n=0 l i m n → ∞ H v c Λ , β ( n ) n = 0

经将有界实损失函数转化到指示损失函数上的方法,我们找到了在有界实损失函数集期望风险和经验风险双边一致收敛的充分条件。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值