李群学习:李群李代数概念

李群: 既是n维微分流形,又是一个群。要求群运算 μ : G × G → G , g h ≡ μ ( g , h ) \mu:G \times G\rightarrow G,gh\equiv\mu(g,h) μ:G×GG,ghμ(g,h) c ∞ c^{\infty} c的。

李群同构:映射 Φ : G → G ′ \Phi:G\rightarrow G' Φ:GG既是群同构,又是微分同胚, Φ \Phi Φ是微分同胚,还满足: Φ ( g h ) = Φ ( g ) Φ ( h ) \Phi(gh)=\Phi(g)\Phi(h) Φ(gh)=Φ(g)Φ(h)

李子群: H ⊂ G H \subset G HG, H H H关于群运算 μ : G × G → G \mu:G \times G\rightarrow G μ:G×GG也是个李群。
群运算诱导左平移和右平移运算
左平移: L g : G → G , L g ( h ) ≡ μ ( g , h ) ≡ g h ;    g , h ∈ G L_g:G\rightarrow G,L_g(h)\equiv \mu(g,h)\equiv gh;\;g,h\in G Lg:GG,Lg(h)μ(g,h)gh;g,hG
右平移: R g : G → G , R g ( h ) ≡ μ ( h , g ) ≡ h g ;    g , h ∈ G R_g:G\rightarrow G,R_g(h)\equiv \mu(h,g)\equiv hg;\;g,h\in G Rg:GG,Rg(h)μ(h,g)hg;g,hG

左不变向量场: G G G上矢量场 X ˉ \bar X Xˉ,满足 L g ∗ X ˉ = X ˉ L_{g*}\bar X=\bar X LgXˉ=Xˉ

在定义左不变向量场的时候,用到了推前映射

M , N M,N M,N是两个微分流形, ϕ : M → N \phi:M\rightarrow N ϕ:MN是光滑映射, X g X_g Xg M M M g g g点的切矢, f : N → R f:N\rightarrow R f:NR是任意一个光滑的标量函数函数,诱导出 f ∘ ϕ : M → R f\circ\phi:M \rightarrow R fϕ:MR,是一个 M M M上的光滑标量函数, N N N上的点 ϕ ( g ) \phi (g) ϕ(g)上的一个向量记为 ϕ ∗ X g \phi_{*}X_g ϕXg,满足 ( ϕ ∗ X g ) f = X g ( f ∘ ϕ ) (\phi_{*}X_g)f=X_g (f\circ \phi) (ϕXg)f=Xg(fϕ)

推前映射是线性空间同态
ϕ ∗ ( g 1 X + g 2 Y ) f = ( g 1 X + g 2 Y ) f ∘ ϕ = g 1 X f ∘ ϕ + g 2 Y f ∘ ϕ = ( g 1 ϕ ∗ X + g 2 ϕ ∗ Y ) f ∀ g 1 , g 2 ∈ F ( x ) \begin{array}{ll} \phi_{*}(g_1X+g_2Y)f &=(g_1X+g_2Y)f\circ \phi\\&=g_1Xf\circ \phi+g_2Yf\circ \phi \\&=(g_1\phi_{*}X+g_2\phi_{*}Y)f \end{array} \\ \forall g_1,g_2 \in \mathscr F(x) ϕ(g1X+g2Y)f=(g1X+g2Y)fϕ=g1Xfϕ+g2Yfϕ=(g1ϕX+g2ϕY)fg1,g2F(x)
∴ ϕ ∗ ( g 1 X + g 2 Y ) = g 1 ϕ ∗ X + g 2 ϕ ∗ Y \therefore \phi_{*}(g_1X+g_2Y)=g_1\phi_{*}X+g_2\phi_{*}Y ϕ(g1X+g2Y)=g1ϕX+g2ϕY.

推前映射构成切空间同态,当 ϕ \phi ϕ是微分同胚时,推前映射是切空间线性同构。

光滑映射 ϕ \phi ϕ M M M上的点"端到" N N N上,顺便还可以把切向量一并"端到" N N N上。如果 M = N M=N M=N ϕ \phi ϕ有两种理解:一种是微分流形的坐标变换,推前映射就是切矢的坐标变换;另一种是移动点的位置,那就建立了微分流行上两点之间的切空间同构关系。

在李群上,就可以将李群单位 e e e点的切空间平移到任意一点,任意单位点的矢量 V V V都可以通过 L g ∗ V , ∀ g ∈ G L_{g*}V,\forall g \in G LgV,gG迁移到点 g g g,得到一个矢量场 X ˉ , L g ∗ X ˉ e = X ˉ g \bar X,L_{g*}\bar X_e=\bar X_g Xˉ,LgXˉe=Xˉg,并且有 L g ∗ X ˉ h = L g ∗ L h ∗ X ˉ e = L g h ∗ X ˉ e = X ˉ g h L_{g*}\bar X_h=L_{g*}L_{h*}\bar X_e=L_{gh*}\bar X_e=\bar X_{gh} LgXˉh=LgLhXˉe=LghXˉe=Xˉgh.是左平移不变的。

这样通过的左移动群运算 L g L_g Lg,将李群 G G G每一点的切空间联系起来得到切空间的同构关系。每一个左不变矢量场一一对应到单位点的一个切矢,因此李群 N N N的左不变向量场集合 G \mathscr G G 与李群 N N N单位点的切空间线性同构 G ≅ T G e \mathscr G \cong TG_e GTGe

另外,推前映射还有 ϕ ∗ : T M → T N \phi_{*}:TM \rightarrow TN ϕTMTN:
ϕ ∗ [ X , Y ] f = [ X , Y ] f ∘ ϕ = ( X Y − Y X ) f ∘ ϕ = X ( ( ϕ ∗ Y f ) ∘ ϕ ) − Y ( ( ϕ ∗ X f ) ∘ ϕ ) = ( ϕ ∗ X ) ( ϕ ∗ Y ) f − ( ϕ ∗ Y ) ( ϕ ∗ X ) f = [ ϕ ∗ X , ϕ ∗ Y ] f \begin{array}{ll} \phi_{*}[X,Y]f &=[X,Y]f\circ\phi\\ &=(XY-YX)f\circ\phi\\ &=X\big((\phi_{*}Yf)\circ\phi\big)-Y\big((\phi_{*}Xf)\circ\phi\big)\\ &=(\phi_{*}X)(\phi_{*}Y)f-(\phi_{*}Y)(\phi_{*}X)f \\&=[\phi_{*}X,\phi_{*}Y]f \end{array} ϕ[X,Y]f=[X,Y]fϕ=(XYYX)fϕ=X((ϕYf)ϕ)Y((ϕXf)ϕ)=(ϕX)(ϕY)f(ϕY)(ϕX)f=[ϕX,ϕY]f

在不变向量场集合 G \mathscr G G上附加了李导数结构: L g ∗ [ X , Y ] = [ L g ∗ X , L g ∗ Y ] L_{g*}[X,Y]=[L_{g*}X,L_{g*}Y] Lg[X,Y]=[LgX,LgY],左不变向量场的李括弧运算结果,仍然是左不变向量场。
也就是说 G \mathscr G G满足:

  1. ∀ X ˉ , Y ˉ ∈ G , g X ˉ + h X ˉ ∈ G , ∀ g , h ∈ F ( G ) \forall \bar X ,\bar Y \in \mathscr G,g\bar X+ h\bar X\in \mathscr G,\forall g,h\in \mathscr F(G) Xˉ,YˉG,gXˉ+hXˉG,g,hF(G)
  2. ∀ X ˉ , Y ˉ ∈ G , [ X ˉ , Y ˉ ] ∈ G \forall \bar X ,\bar Y \in \mathscr G,[ \bar X ,\bar Y]\in \mathscr G Xˉ,YˉG,[Xˉ,Yˉ]G

所以 G \mathscr G G是李代数。

给定一个李群,就必有下面5个内容:

  1. 由运算 μ : G × G → G \mu:G \times G\rightarrow G μ:G×GG 得到左平移 L g h ≡ μ ( g , h ) = g h L_{g}h\equiv\mu(g,h)= gh Lghμ(g,h)=gh

  2. 左平移得到推前映射 L g → L g ∗ L_g \to L_{g*} LgLg

  3. 给定单位点 e e e有切空间 T G e TG_e TGe,得到 X e ∈ T G e X_e \in TG_e XeTGe,

  4. 由推前映射 L g ∗ L_{g*} Lg X e    , ∀ X e ∈ T G e X_e\;,\forall X_e \in TG_e Xe,XeTGe得到不变向量场 X ˉ , X ˉ g = L g ∗ X e \bar X,\bar X_g=L_{g*}X_e Xˉ,Xˉg=LgXe

  5. 推前映射自然的与李括号积可以交换 L g ∗ [ X ˉ , Y ˉ ] = [ L g ∗ X ˉ , L g ∗ Y ˉ ] L_{g*}[\bar X,\bar Y]=[L_{g*}\bar X,L_{g*}\bar Y] Lg[Xˉ,Yˉ]=[LgXˉ,LgYˉ],得到李代数 G ≅ T G e \mathscr G \cong TG_e GTGe.

所以:李代数是李群的内禀结构,并且同构与任意一点的切空间 T G g , ∀ g ∈ G TG_g,\forall g\in G TGg,gG,李群同态诱导出的李代数也同态,李群同够诱导出的李代数也同构。

反过来来,给定一个李代数,存在一个李群的李代数与之同构。但这个李群不是唯一的,如果是单联通李群,那么李代数同构诱导李群同构。

既然李群 G \mathscr G G是一个线性空间,那么可以任意选定其中一组n个向量 X i X_i Xi作为基,那么 [ X i , X j ] [X_i,X_j] [Xi,Xj]也是李代数的一元,就可以由这组基线性表出:
[ X i , X j ] = C i , j k X k [X_i,X_j]=C_{i,j}^kX_k [Xi,Xj]=Ci,jkXk
C i , j k C_{i,j}^k Ci,jk称为结构常数。
因为李括弧积是反衬的,所以结构常数也是反衬的。
[ X j , X i ] = C j , i k X k = − [ X i , X j ] = − C i , j k X k ⇒ C i , j k = − C j , i k [X_j,X_i]=C_{j,i}^kX_k=-[X_i,X_j]=-C_{i,j}^kX_k\Rightarrow C^k_{i,j}=-C^k_{j,i} [Xj,Xi]=Cj,ikXk=[Xi,Xj]=Ci,jkXkCi,jk=Cj,ik

这里讨论的东西,对有李群右平移,右不变向量场都成立,同样得到的李代数也成立。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 微分流形与李群是数学中两个重要且密切相关的概念。 微分流形是一种具有局部欧几里得空间结构的抽象空间。在微分流形中,每个点都有一个切空间,切空间由该点上的切向量组成。微分流形的定义涉及到一些光滑函数的概念,如光滑映射和光滑流形上的曲线。微分流形的研究使得我们能够将许多问题从局部拓展到全局,从而更好地理解这些问题的性质。 而李群则是一种具有群结构和光滑流形结构的特殊对象。李群可以看作是实数轴上的平移和旋转的推广,它们是一类对称性极高的对象。李群的研究在物理学、几何学、数学物理学等领域有着广泛的应用。李群具有许多重要的性质,如乘法可逆性、右平移不变性等,这使得它们成为研究变换和对称性的理想工具。 《微分流形与李群基础》是一本介绍微分流形和李群理论基础的教材或参考书籍。这本书通常会介绍微分流形和李群的基本定义、性质以及与其相关的一些重要定理和应用。它不仅向读者展示了这两个概念的数学意义和美妙之处,还帮助读者理解它们在各个领域中的应用。 通过学习《微分流形与李群基础》,读者可以深入了解微分流形和李群的基本理论,掌握它们的基本性质和重要定理,以及它们在几何学、物理学和其他应用领域中的具体应用。对于那些想要从事相关领域的研究的人来说,这本书是一个很好的入门教材。 ### 回答2: 微分流形与李群是现代数学的两个重要分支,它们在许多领域有着广泛的应用,包括物理学、计算机科学和工程学等。 微分流形是一种广义的曲面,它可以在其中定义切空间、切向量以及相关的微分结构。微分流形的最基本的例子就是欧几里得空间中的平面和曲线,但它们的定义可以扩展到更一般的情况。微分流形的基础知识包括切空间、切向量、切丛以及联络等概念,这些概念为我们研究微分方程、测度论和外微分等提供了重要的工具。 李群是一种具有群结构和光滑流形结构的数学对象。李群主要研究群上的微分结构及其相关性质,它在对称性、变换群和李代数的研究中扮演着重要的角色。李群的基础知识包括群表示、李代数、群作用以及李群的结构等,这些知识可以应用于物理学中的对称性研究、机器学习中的降维等问题。 对于初学者来说,学习微分流形和李群需要一些基础的数学知识,比如线性代数和实分析。一本好的PDF教材可以作为初学者学习这些知识的参考书,它可以提供清晰的定义、详细的推导和有趣的例题。同时,应该选择那些结构清晰、内容综合的教材,可以从浅显到深入地介绍微分流形和李群的基本概念以及它们的应用。 总而言之,微分流形与李群是现代数学中重要的研究领域,学习它们需要一定的数学基础。选择一本结构清晰、内容全面的PDF教材是初学者掌握这些知识的好方法。通过深入学习微分流形与李群,我们可以更好地理解和应用数学在实际问题中的价值。 ### 回答3: 微分流形与李群是数学中重要的两个概念,它们在物理学、工程学、计算机科学等领域都有广泛的应用。微分流形是空间的一种特殊结构,可以从局部类似于欧几里得空间的小区域逐渐拼接起来构成整个空间。微分流形的基础理论包括切空间、切丛、流形上的切矢量场等。微分流形上的微积分运算可以一般化到一般流形上,不仅包括了传统的矢量微积分,还有微分形式、外微分、李导数等。 李群是具有群结构且同时是光滑流形的数学对象。其群结构使得李群可以进行群运算,而光滑流形结构使得李群具有光滑性质。李群在几何学、物理学和控制论中都有广泛应用。例如,旋转群和平移群是李群的典型例子,它们在刚体运动和机器人运动控制中起着重要作用。 微分流形与李群之间存在着紧密的联系。每个李群都可以看作是一个微分流形,而每个微分流形上的某些特殊结构也可以形成李群。这种对应关系可以让我们在处理李群和微分流形时同时运用它们的相应理论和工具,从而更加深入地研究它们的性质和应用。 《微分流形与李群基础》是一本介绍微分流形与李群基础理论的书籍。它系统地介绍了微分流形和李群的定义、性质、结构和重要定理。读者可以通过学习这本书,了解微分流形和李群的基本概念、理论框架和应用方法。这本书的内容一般较为抽象和理论化,因此需要有一定的数学基础,如线性代数、多变量微积分和拓扑学等。对于那些希望深入了解微分流形和李群,或者通过它们解决实际问题的读者来说,《微分流形与李群基础》是一本不可或缺的参考书。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值