使用软件或Python编程时EIS拟合的底层逻辑(EIS拟合的原理/过程)

本文探讨了电化学稳态阻抗谱(EIS)的等效电路拟合(EIS拟合)原理,强调了选择合适等效电路的重要性。通过解释EIS测试的基本概念和阻抗的实部与虚部,阐述了EIS拟合的底层逻辑,即寻找等效电路表达式以匹配实际阻抗。介绍了一种基于Python的非线性最小二乘回归法进行EIS数据拟合的方法,并讨论了拟合过程中的验证步骤,包括χ2值和标准差σ的评估,以确保拟合结果的物理意义和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在二次充放电电池、分析电极、腐蚀电化学还有氧化还原电极的实验过程中,往往需要在测试电化学稳态阻抗谱(EIS)之后,还需要对其进行等效电路的拟合(EIS拟合)。经过物理化学家的不懈努力,EIS拟合目前已经发展成熟,许多的拟合软件已经商业化,并且也有很多的教程教导人们如何使用软件。但是一个EIS数据可以对应多个等效电路,因此选择等效电路成为了EIS拟合的一个很重要的点。等效电路的选择可以通过大量地阅读相关专业领域的文献来限定。但是如果是出现了不同于本领域的EIS图谱的时候,就需要到EIS的拟合底层逻辑里面去找寻解决办法。
因为EIS拟合现在已经发展成为一个应用层面的东西,所以我在入门的时候对于底层逻辑并没有研究很清楚就开始动手了。现在再研究EIS拟合的python源代码的时候,我对这个底层逻辑又有了从新的认识。所以写下这个文章来提醒自己和分享给大家。
EIS是改变频率的大小,在单个频率的位置给体系传入一个具有固定振幅的电压,记录体系传出的电流的变化,同时将这个电流和电压的关系通过欧姆定律换算为阻抗值。由于振幅的变化是很微弱同时是正负相消的,所以对体系的影响是很微弱,对体系的物理化学性质没有影响的,是一种近乎稳态的无损的测量方式。另外由于电压在其振幅范围内是随着频率交变变化的(高频就是变化快,低频就是变化慢),所以得到的电流及转换后的阻抗都是有频率变化的特性的。因此,EIS导出的数据是一组(频率,阻抗实部,阻抗虚部)。也可以从侧面的地说明,振幅的大小在结果中是不会直接反映出来的,是属于测试中的控制变量。越大的振幅,在同一频率下,可以提高电流的大小,增强阻抗的收集敏感度,但同时也增加了测试时间。
阻抗分为实部和虚部,实际阻抗的表达式:
Z = Z ′ + j Z ′ ′ Z = Z^{\prime} + jZ^{\prime\prime} Z=Z+jZ
实部和虚部的值的平方和根号是模量:
∣ Z ∣ 2 = Z ′ 2 + Z ′ ′ 2 |Z|^{2} = Z^{\prime 2} + Z^{\prime\prime 2} Z2=Z2+Z2
虚部与实部的比是相位角的正切值:
tan ⁡ ϕ = − Z ′ ′ Z ′ \tan\phi = \frac{- Z^{\prime\prime}}{Z^{\prime}} tanϕ=ZZ
EIS拟合的底层逻辑就是找到拟合阻抗表达式能够无限接近甚至等价于实际阻抗的表达式。
因此,为了这个目的,我们就要用到电路学上的数学等式进行变换:
在串联电路中,实际阻抗和各部分的元器件的阻抗的总和:
Z = Z 1 + Z 2 + ⋯ + Z n Z = Z_{1} + Z_{2} + \cdots + Z_{n} Z=Z1+Z2++Zn
在并联电路中,实际阻抗和各部分的元器件的阻抗的倒数的总和的倒数:
Z = 1 1 Z 1 + 1 Z 2 + ⋯ + 1 Z n Z = \frac{1}{\frac{1}{Z_{1}} + \frac{1}{Z_{2}} + \cdots + \frac{1}{Z_{n}}} Z=Z11+Z21++Zn11
为了代入上述的表达式,我们就要知道每个元器件的阻抗表达式:
电阻,阻抗中电阻性越强,整体图形越偏X轴正轴(实部,Z),因为频率是从大到小:
Z = R Z = R Z=R
纯电容,阻抗中电容性越强,整体图形越偏Y轴正轴(虚部,-Z),因为频率是从大到小:
Z = 1 C × j 2 π f

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值