3、金属材料微波铸造综述

金属材料微波铸造综述

1. 引言

在当今制造业中,降低能耗以提高工艺效率是研究的焦点。微波能量已广泛应用于烧结、熔覆和连接等领域,但在不同金属材料铸造领域的应用尚未得到充分探索。与传统铸造方法相比,微波铸造具有诸多优势,如缩短加工时间、实现均匀体加热、改善机械性能和微观结构等。

传统材料加热和铸造方式存在诸多局限:
- 耗时较长;
- 能耗过大;
- 材料加热不均匀。

而微波铸造(MWC)作为一种新型技术,能有效减少这些缺点。它具有以下优点:
- 节省时间和能源;
- 体加热效果好;
- 缩短加工时间;
- 增强微观结构性能;
- 提升产品性能、机械和摩擦学行为。

微波是一种波长在10 - 300 mm、频率在0.3 - 300 GHz的电磁辐射,材料加工中最常用的微波频率为2.45 GHz,功率范围各异。传统加热时,热能量通过金属部件表面以传导方式传递到核心;而微波加热中,由于分子与电磁能相互作用,热能量从材料内核心向表面传递,可实现有效加热、选择性加热和体加热。

近年来,通过微波进行的原位铸造和异位铸造产品因优势众多而日益流行。许多研究人员尝试借助不同微波功率和使用敏化材料来铸造AA - 7039(Al - Mg - Zn)、Al - 1050等轻质材料,也探索了用传统微波炉对冶金研磨粉末样品进行铸造。

2. 历史背景

微波能量的应用可追溯到1948年二战后,当时需要能缩短时间、提高产品质量和减少周期时间的加工技术。最初,微波主要用于液体加热和食品加工。20世纪60年代,其应用扩展到木材固化、橡胶硫化及加工等领域。

本项目聚焦于运用卷积神经网络技术进行人体姿态与动作的识别分析。核心程序模块包含四个组成部分:姿态检测模块、训练数据采集模块、模型训练模块以及主控程序模块。 在姿态检测模块中,构建了一个姿态识别类,该类整合了两种关键方法。第一种方法通过调用现成的骨骼点识别接口处理输入图像,获取人体关键节点信息并将识别结果存储在特定变量中;第二种方法则利用可视化工具包,将检测到的骨骼节点在图像中进行标注并建立连接关系。 训练数据采集模块实现了图像存储功能,该模块通过调用图像处理库的存储接口,将采集到的样本图像保存至本地存储设备,为后续模型训练阶段提供数据支持。 模型训练模块定义了完整的卷积神经网络训练流程。该模块首先调用数据采集模块保存的图像数据集,通过多层级卷积运算提取图像特征,采用反向传播算法优化网络参数,最终生成可用于动作分类的识别模型。整个训练过程包含数据预处理、网络结构配置、损失函数计算和参数优化等标准步骤。 项目采用模块化设计理念,各功能组件之间保持高度独立性,通过清晰的接口定义实现数据交互。技术实现方面,结合了深度学习框架与计算机视觉库,构建了从数据采集到模型训练的全流程解决方案。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值