论文精读
文章平均质量分 95
来日可期Dream
这个作者很懒,什么都没留下…
展开
-
[实体关系抽取|顶会论文]Does it Really Generalize Well on Unseen Data? 它真的能很好地概括看不见的数据吗?关联三重提取方法的系统评价
在这篇文章中,揭露了当前主流模型的对于未曾训练过的数据集的泛化能力不强,作者使用实体噪声方式,强化了模型对于未见数据的泛化能力,同时也保持了对于训练中出现过的三元组识别的泛化能力。所以,对于以后得模型训练可以多多考虑对于泛化能力的提升,或者使用作者提供的数据集进行训练,然后性能再对其他的模型在这个数据集上进行比较,对其他的模型造成降维打击。原创 2023-12-09 16:03:19 · 943 阅读 · 0 评论 -
[文档级关系抽取|ACL论文]文档级关系抽取中语言理解的基础模型
对于这篇文章,完全揭示了当前文档级关系抽取(甚至句子级关系抽取)的现状,知识把杂七杂八的东西放到了池子中去学习,让模型只能在学习到的数据集中有比较好的效果。基于transformer的预训练语言模型,都希望在给定上下文X的情况下,提高当前单词的概率Y,上下文应该由P(Y|X)表示,但学习的是P(Y|X, A),其中A表示为对采样过程的访问,从而导致有偏差。目前,Y的语义很大程度依赖着有明确语义的词,即U->Y,他们的组合形成了自然的语言表达,其过程可以使用A->X表述,其中A决定了单词在上下文的分布。原创 2023-12-09 12:35:17 · 1567 阅读 · 0 评论 -
[实体关系抽取]TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Link
2020.10.26|COLING-2020|中国科学院大学|原文链接|源码链接过去的方法:联合学习可以获得明显的性能增益。 然而,它们通常涉及顺序的相互关联的步骤,并遭受暴露偏差的问题。 在训练时,他们根据地面真值条件进行预测,而在推理时,他们必须从头开始提取。 这种差异导致错误积累。论文中的方法:握手标注方法提出了一个单阶段联合提取模型TPLINKER,它能够发现共享一个或两个实体的重叠关系,同时不受暴露偏差的影响过去阶段一:把实体识别和关系抽取完全分离,容易造成级联错误过去阶段二:联合学习整合原创 2022-12-05 19:40:19 · 1055 阅读 · 0 评论 -
[实体关系抽取|顶刊论文]QIDN:基于查询的关系三元组抽取实例判别网络
使用CV中的DETR的query embeddings的思想用于NLP之中,在全局的角度上,把各个关系之间的含义链接了起来,最后,将实例归类,每个类之间的三元组雷同。原创 2023-03-21 10:24:47 · 591 阅读 · 1 评论 -
[实体关系抽取|顶刊论文]UniRel:Unified Representation and Interaction for Joint Relational Triple Extraction
2022.11.16|EMNLP 2022|中国科学技术大学 |原创 2023-01-08 23:03:15 · 3328 阅读 · 23 评论 -
[实体关系抽取|顶会论文]CasRel:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction
本文的最大亮点是绕开过去的方法——将关系建模为实体对的离散标记。而是将关系抽象为主语与宾语的函数,进而解决了重叠问题。目前joint方法基本就是魔改各种tag框架和decoding方式。但是,目前还是在概率论知识上有所欠缺,不能理解为什么作者用这些公式,和这些式子的效果。因此还是需要进一步补数理基础与机器学习基础。原创 2023-01-03 19:07:51 · 1189 阅读 · 0 评论 -
[实体关系抽取|顶刊论文]DirectRel:Relational Triple Extraction: One Step is Enough
2022.5.11 |IJCAI-2022|华中科技大学|2022年SOTA暴力方法:穷举一个句子的令牌序列,结果是肯定会包含正确的实体因此:看是否存在关系,可以直接识别三元通过枚举令牌序列生成候选实体为每个关系设计一个链接矩阵来检测两个候选实体是否可能构成有效的三元组三元组的提取转化为一个关系特定的二部图链接问题实体:S={w1,w2,..原创 2022-12-04 20:14:01 · 2055 阅读 · 4 评论 -
[实体关系抽取|博士论文]面向文本数据的关系抽取关键技术研究
词汇特征:文本中词汇或词的属性,如全拼与缩写的关系句法特征:最常见的是词性特征:实词、虚词、量词等语义特征:指单一字符或多字符进行语义分类的结果,如牛顿发现了万有引力,判断是否是发现的关系,可以解决数据稀疏问题,缓解语义多样性带来的语义混淆问题语篇特征:句子与句子之间的关系或片段之间的关系。原创 2022-11-28 19:16:46 · 564 阅读 · 0 评论 -
[病虫害识别|博士论文]非结构环境下病虫害识别方法研究
提出一种基于级联卷积神经网络的植物病害识别方法提出一种融合农田多源环境信息的害虫监测方法提出一种新的目标检测损失函数解决特征冲突问题本文研究的主要方面在于特征提取。(其他部分沿用目前最全面的公开数据和病虫害数据以及最先进的开源算法)病害检测本质上->图像分类问题。害虫检测->图像分类/目标定位两个子任务使得从数据i中提取的特征表示q与标签l之间的损失函数Loss(q, l)足够小n为特征表示的维度。原创 2022-11-26 18:36:00 · 1139 阅读 · 0 评论 -
[病虫害识别|博士论文]面向农作物叶片病害鲁棒性识别的深度卷积神经网络研究
针对实际环境识别精度不高,设计并实现了高阶残差网络——高阶残差卷积神经网络方法针对实际环境下识别鲁棒性弱的问题,设计并实现了参数共享反馈网络针对农作物病害图像背景复杂,病斑区域小、病斑与北京对比度小从而造成两者混淆等特点,导致识别鲁棒性不高的问题,提出了一种基于自注意力的卷积神经网络。原创 2022-11-04 10:34:03 · 2500 阅读 · 1 评论