[文档级关系抽取|ACL论文]文档级关系抽取中语言理解的基础模型

Did the Models Understand Documents? Benchmarking Models for Language Understanding in Document-Level Relation Extraction

School of Computer Science, Fudan University | ACL 2023.06 | 原文链接

Background

过去的工作大多数都是从单个句子中收获更多的关系,然而如今要采用多个句子作为一个整体来获得更多的关系,即文档级关系抽取(DocRE),因为需要综合文档中的所有信息,所以文档级关系抽取是更有挑战性的。

过去存在的问题

一种常见的评估方法是测量整个测试集的平均误差,这忽略了模型可以根据错误的特征做出正确预测的情况。如上图,Vera Cáslavská和Czech之间的关系,机器所考虑的决策方式与人类的完全不同,

文章工作内容简述

  1. 在DocRED上进一步注释成了$ DocRED _ { HWE } $
  2. 采用特征归因法观察模型在推理过程中考虑的最关键的词,发现模型总是将不相关的词语虚假的关联起来,形成了无法解释的决策
  3. 证明了模型中的决策方式是不可靠的,设计了6种RE攻击方式证明
  4. 引入平均精度(MAP)指标评价模型的理解能力和推理能力,由此区分因伪相关性引起的能提升因理解能力引起的性能提升,最终发现MAP越高,模型的鲁棒性和泛化能力越强
  • DocRED: 大型文档级关系抽取数据集
  • $ DocRED _ { HWE } $: HWE表示人类注释的词级证据,human-annotated word-level evidence

过去的文档级关系识别

主要分为图的方法基于变换器的方法

  • 基于图的:基于图的方法利用上下文的结构信息构造各种图,并通过图中的路径对推理过程的多次反射进行建。DocuNet(SOTA)中构建了一个实体级的关系图,然后利用图上的U形网络来捕获全局相互依赖性

  • 基于Transformerbased方法的:执行推理隐式识别的长距离令牌依赖通过transformers。ATLOP通过相关上下文增强了实体对的嵌入,并为多标签分类引入了一个可学习的阈值

工作内容1 : DocRED_HWE

难点:第一个挑战来自原始数据集中的注释工件,第二个挑战在于单个关系的多个推理路径

解决方式:采用细粒度的单词级的证据,并且提出了一个新的检查规则,用于二次推理,只有被验证两次才会被采用

  • 来自原始数据集中的注释工件:注释器可以使用先验知识通过实体名称来标记关系,而不需要观察上下文。例如,给定一个跨句实体对“Obama”和“the US”的文档,尽管缺乏理论依据注释者还是倾向于标注“president of”。可以通过注释细粒度的单词级证据来自然地解决
  • 需要注释器对所有推理路径中的单词进行注释。当注释者通过相应的证据词成功推理出某种关系时,其他推理路径中的证据词往往会被忽略。为了解决这一问题,对每个文档采用了多个(滚动)标注,并提出了检查规则:给定一个文档,之前标注的关系被屏蔽,标注者将无法对关系进行推理。如果违反规则,新的证据词将被标注。更新将由下一个注释器检查,直到没有更新发生。所有注释的证据词至少被验证两次。

并且作者最后对于结果进行了一定的人工筛选

工作内容2 : 发现模型总是将不相关的词语虚假的关联起来,形成了无法解释的决策

建立模型参数

  • 文档$ d $
  • 实体集 $ \varepsilon = { e_i } ^n _ { i = 1 } $
  • 提取的目标为预测实体对中$ (e_i , e_j)_ { i, j=1…n;i!=j } $
  • 范围是在 R ∪ { N A } R \cup \{ NA \} R{NA}中,
    • 其中 R R R表示为预测的关系集
    • N A NA NA为没有关系的实体对。
  • 使用 { m j i } j = 1 N i \{ m _ j ^ i \} _ { j = 1 } ^ { N _ i } {mji}j=1Ni区分每个实体,
  • 最终抽取的三元组的格式为 $ { (e_i, r _ ij, e _ j ) | e_i, e_j \in \varepsilon, r_ij \in R } $

验证方式

选择基于图的DocuNet,基于Transformer的ATLOP,通过综合梯度(IG)作为归因方法(因为具有简单且可信的特性)。

使用积分梯度法,计算模型在输入上的输出和参考点上的输出,它俩之间的差值作为token的score进行分配。即如下图所示,给定一个输入 x x x,和参考点$ x’ , I G 计算从 ,IG计算从 IG计算从 x’ $ 到 $ x 的第 i 维的梯度 的第i维的梯度 的第i维的梯度 g _ i 线性积分。其中 线性积分。其中 线性积分。其中 \frac { \partial F(x) } { \partial x_i } 表示输出 表示输出 表示输出 F(x) $到 $ x 的梯度。将 的梯度。将 的梯度。将 x’ $设置所有值为0的Embbeding vectors

在这里插入图片描述

数据集有:

  • D o c R E D DocRED DocRED D o c R E D S c r a t c h DocRED _ { Scratch } DocREDScratch,其中 D o c R E D DocRED DocRED有56354个关系,96种关系类型,大多只能通过推理识别。$DocRED_ { Scratch } 很大程度偏离了 很大程度偏离了 很大程度偏离了DocRED$的训练集,可以用于测试模型的泛化能力
  • D o c R E D H W E DocRED_{HWE} DocREDHWE人工注释了1521不同实体的代词,用于忽略。

实验与分析

位置误导

使用IG来描述模型的决策规则。
A T L O P R o B E R T a ATLOP _ RoBERTa ATLOPRoBERTa在DocRED验证集中不同位置的上平均分布,归因DocuNet也会出现类似的曲线。
在这里插入图片描述

如上图所示,特定位置的token信息比其他位置的words信息的affect更明显。

也就是说,模型根据单词在文档中的位置来区分单词,原因应该为:

  • 在学习过程中扭曲了位置特征,将其与预测结果虚假地关联了起来
  • 位置Embbeding被错误的训练(没监督),偏离了表示位置信息的原始功能
    由此说明,泛化能力弱
狭隘的推理

推理正确关系所需要的单词,代表模型的推理范围

设模型为"A X B",A、B为实体,X为推理关系所需要的单词/单词序列,设X为$r_AB$的前k个赋值token,token的顺序与原文相同,DocRED性能如上图所示。

  • 添加最高属性(我理解为强属性)的单词会导致性能下降
  • position的权重比较大
  • 当只给出实体名称不给上下文,性能可以达到原模型的85%(53%的f1分数)
    由此推出,模型在一个比较狭隘的范围内推理
虚假相关

选择前5个具有属性的单词来显示模型的证据单词。可以发现,很大程度上依赖了一些非因果标记(如实体名称和标点符号),这不利于深度学习。比如逗号就起到了很大作用(SEP和CLS可以证明为无操作的操作符)。因此,该模型不能被部署到现实场景中,因为非因果令牌很容易被替换掉。

原因分析

  • U是因果关系确定的证据词
  • Y是预测词
  • X是文档
  • 给定X和A,模型学习H和Y之间的伪相关。

基于transformer的预训练语言模型,都希望在给定上下文X的情况下,提高当前单词的概率Y,上下文应该由P(Y|X)表示,但学习的是P(Y|X, A),其中A表示为对采样过程的访问,从而导致有偏差。如上图的有向无环图所示。

其中H为有语法意义的(如the,逗号),U为相对不太可能访问采样过程或上下文。目前,Y的语义很大程度依赖着有明确语义的词,即U->Y,他们的组合形成了自然的语言表达,其过程可以使用A->X表述,其中A决定了单词在上下文的分布。

目前来说,PLM训练后的模型,倾向于将虚假的信息与关系关联起来。

工作内容3 : 针对SOTA模型的攻击

证明:

  1. 模型的决策规则与人类的不同
  2. 这种差异会严重损害鲁棒性和泛化能力

由十字架标注的为有监督的训练。

  • P2N:消极预测积极预测变为原始积极预测
  • UP:不变的积极预测变为原始积极预测的比例
Word-level Evidence Attacks
  1. 蒙面词级攻击,所有被人标注的Word-level Evidence(HWE)都被直接Masked(Mask)
  2. 反义词替换,HWE中一个词被一个反义词替换(ASA)
  3. 同义词替换,HWE中一个词被一个同义词替换(SSA)

结果如上图所示,在Mask攻击下,模型仍预测相同的关系【但是性能下降了79%】,在ASA攻击下性能下降了90%,和SSA性能与ASA大致相同。可证明鲁棒性很差。

Entite Name Attacks
  1. 屏蔽实体攻击(EM),直接屏蔽实体名称
  2. 随机打乱实体攻击(ER),随机置换每个文档中的实体名称
  3. 非分发(OOD)实体替换攻击(ES),使用训练数据中没有的实体名称来替换

结果如上图,ES下降最严重,从67.12->7.57

工作内容4 : 新的评价指标MAP

在上述中,证明了模型应该学习人类的决策规则。由此提出一个新的评价指标MAP:

  • 1t(i)表示预测第t个相关事实的第i个重要字的指示函数
  • K的选择,类似于推荐系统中的评价指标,取决于RE从业者的需求,通常设置为1、10、50和100。

如果单词在人类标注的单词级证据中,则1t(i)的输出值等于1。否则等于0

个人思考

对于以往的深度学习中,大多都是黑盒训练,每次看别人的论文也是,往往都不知道为什么就起作用了,故都是认为就把上下文的关系或者别的之类的token联系在一起用了而已,就像世界十大难题中的中文房间问题一样,就算给出正确的结果,不知道里面的人到底会不会中文。对于这篇文章,完全揭示了当前文档级关系抽取(甚至句子级关系抽取)的现状,知识把杂七杂八的东西放到了池子中去学习,让模型只能在学习到的数据集中有比较好的效果。对于以后的实验中,针对于这一部分,可以优化。

  • 21
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
句子文档抽取是自然语言处理的一个重要任务,它的目的是从文档提取出与某一主题相关的句子。这些句子可以被用于摘要生成、信息检索、文本分类等任务。在本文,我们将介绍句子文档抽取的相关知识,包括任务定义、技术方法、评估指标等。 一、任务定义 句子文档抽取的任务定义是从给定的文本抽取出与某一主题相关的句子。这个主题可以是一个关键词、一个短语、一个问题等等。句子文档抽取可以用于自动摘要、信息检索、文本分类等任务。例如,在自动摘要,我们可以从一篇文章抽取出与摘要主题相关的句子,然后将它们组合成一个摘要。 二、技术方法 句子文档抽取的技术方法主要包括以下几种: 1. 基于关键词的方法 基于关键词的方法是最简单的句子文档抽取方法之一。它的基本思想是在文本查找与主题相关的关键词,并提取包含这些关键词的句子。这种方法的优点是简单易用,但它的缺点是无法处理同义词、词形变化、多义词等问题。 2. 基于统计的方法 基于统计的方法是句子文档抽取最常用的方法之一。它的基本思想是根据某些统计特征来确定句子的相关性。这些统计特征可以是词频、句子长度、词性、词义等等。例如,在文本分类,我们可以使用朴素贝叶斯算法来计算每个句子属于某个类别的概率,然后选择概率最大的句子作为与主题相关的句子。 3. 基于机器学习的方法 基于机器学习的方法是句子文档抽取最先进的方法之一。它的基本思想是使用机器学习算法来训练一个模型,该模型可以根据某些特征来确定句子的相关性。这些特征可以是词频、句子长度、词性、词义等等。例如,在文本分类,我们可以使用支持向量机、决策树等机器学习算法来训练一个分类器,然后使用该分类器来判断每个句子是否属于某个类别。 4. 基于深度学习的方法 基于深度学习的方法是句子文档抽取最新的方法之一。它的基本思想是使用深度神经网络来学习句子的表示,然后根据这些表示来判断句子的相关性。例如,在文本分类,我们可以使用卷积神经网络、循环神经网络等深度学习算法来学习句子的表示,然后使用这些表示来判断每个句子是否属于某个类别。 三、评估指标 句子文档抽取的评估指标主要包括以下几种: 1. 准确率 准确率是句子文档抽取最常用的评估指标之一。它的定义是正确抽取的句子数除以总的抽取句子数。例如,如果我们抽取了100个句子,其有90个与主题相关,而我们正确地识别了85个相关句子,那么准确率为85%。 2. 召回率 召回率是句子文档抽取另一个常用的评估指标。它的定义是正确抽取的句子数除以总的相关句子数。例如,如果文本有100个与主题相关的句子,而我们正确地识别了85个相关句子,那么召回率为85%。 3. F1值 F1值是准确率和召回率的调和平均值。它的定义是2乘以准确率和召回率的乘积除以准确率和召回率的和。例如,如果我们的准确率为85%,召回率为90%,那么F1值为87.17%。 四、应用场景 句子文档抽取在自然语言处理被广泛应用,主要包括以下几个方面: 1. 自动摘要 自动摘要是句子文档抽取的一个重要应用场景。它的基本思想是从一篇文章抽取出与摘要主题相关的句子,然后将这些句子组合成一个摘要。自动摘要可以用于新闻报道、科技文章、学术论文等领域。 2. 信息检索 信息检索是句子文档抽取的另一个重要应用场景。它的基本思想是从文本抽取出与查询相关的句子,并返回给用户。信息检索可以用于搜索引擎、智能问答系统等领域。 3. 文本分类 文本分类是句子文档抽取的另一个应用场景。它的基本思想是根据文本的内容将文本分为不同的类别。例如,我们可以将新闻文章分为体育、娱乐、科技等不同的类别。文本分类可以用于新闻分类、情感分析、垃圾邮件过滤等领域。 五、研究现状 句子文档抽取是自然语言处理的一个热门研究方向。近年来,研究人员提出了许多新的方法和模型来解决这个问题。下面我们将介绍一些最新的研究成果。 1. 基于注意力的模型 基于注意力的模型是最新的句子文档抽取方法之一。它的基本思想是使用注意力机制来学习句子的表示,然后根据这些表示来判断句子的相关性。例如,在文本分类,我们可以使用注意力机制来学习每个句子的重要性,然后使用这些重要性来调整每个句子的表示,从而提高分类的准确率。 2. 基于语言模型的方法 基于语言模型的方法是句子文档抽取另一个最新的方法。它的基本思想是使用语言模型来学习句子的表示,然后根据这些表示来判断句子的相关性。例如,在自动摘要,我们可以使用语言模型来计算每个句子的概率,然后选择概率最大的句子作为摘要。 3. 基于深度强化学习的方法 基于深度强化学习的方法是最新的句子文档抽取方法之一。它的基本思想是使用深度强化学习算法来训练一个模型,该模型可以根据某些特征来确定句子的相关性。例如,在信息检索,我们可以使用深度强化学习算法来训练一个智能代理,该代理可以根据用户的查询历史来选择与查询相关的句子。 六、总结 句子文档抽取是自然语言处理的一个重要任务,它的目的是从文档提取出与某一主题相关的句子。句子文档抽取可以用于自动摘要、信息检索、文本分类等任务。在技术方法方面,我们介绍了基于关键词、统计、机器学习深度学习等方法。在评估指标方面,我们介绍了准确率、召回率、F1值等指标。在应用场景方面,我们介绍了自动摘要、信息检索、文本分类等方面。最后,我们介绍了一些最新的研究成果,包括基于注意力的模型、基于语言模型的方法、基于深度强化学习的方法等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值