传送门
已知下降幂多项式 A ( x ) = ∑ i = 0 n a i x i ‾ A(x)=\sum_{i=0}^na_ix^{\underline i} A(x)=∑i=0naixi
现在求普通多项式 B ( x ) = ∑ i = 0 n b i x i B(x)=\sum_{i=0}^nb_ix^i B(x)=∑i=0nbixi使得 A ( x ) = B ( x ) A(x)=B(x) A(x)=B(x)
思路:
考虑先 f f p ffp ffp转点值,然后快速插值即可求出对应的普通多项式。
注意到由于求出来的点值的横坐标连续所以不用多项式多点求值+洛必达法则+求导啦,直接用阶乘逆元预处理即可。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
static char buf[rlen],*ib,*ob;
(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
return ib==ob?-1:*ib++;
}
inline int read(){
int ans=0;
char ch=gc();
while(!isdigit(ch))ch=gc();
while(isdigit(ch))a