洛谷P5393 【模板】下降幂多项式转普通多项式(多项式快速插值)

这篇博客介绍了如何将下降幂多项式转换为普通多项式,利用快速插值的方法,指出由于横坐标连续,可以避免多点求值和洛必达法则,通过阶乘逆元预处理简化计算。提供了相关的代码实现。
摘要由CSDN通过智能技术生成

传送门
已知下降幂多项式 A ( x ) = ∑ i = 0 n a i x i ‾ A(x)=\sum_{i=0}^na_ix^{\underline i} A(x)=i=0naixi
现在求普通多项式 B ( x ) = ∑ i = 0 n b i x i B(x)=\sum_{i=0}^nb_ix^i B(x)=i=0nbixi使得 A ( x ) = B ( x ) A(x)=B(x) A(x)=B(x)
思路:
考虑先 f f p ffp ffp转点值,然后快速插值即可求出对应的普通多项式。
注意到由于求出来的点值的横坐标连续所以不用多项式多点求值+洛必达法则+求导啦,直接用阶乘逆元预处理即可。
代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
   
	static char buf[rlen],*ib,*ob;
	(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
	return ib==ob?-1:*ib++;
}
inline int read(){
   
	int ans=0;
	char ch=gc();
	while(!isdigit(ch))ch=gc();
	while(isdigit(ch))a
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值