【模板】【洛谷P5393】下降幂多项式转普通多项式(拉格朗日插值)(NTT)

传送门


题解:

首先对于下降幂多项式,其系数表达的点值EGF只需要乘上一个 e x e^x ex

于是我们得到了若干个点值,直接份治拉格朗日插值即可。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}
inline void Mul(int &a,int b){a=mul(a,b);}

typedef std::vector<int> Poly;

typedef std::pair<Poly,Poly> PP;
#define fi first
#define se second

std::ostream &operator<<(std::ostream &out,cs Poly &a){
	if(!a.size())out<<"empty ";
	for(int re i=0;i<a.size();++i)out<<a[i]<<" ";
	return out;
}

cs int bit=20,SIZE=1<<20|1;
int r[SIZE],*w[bit+1];
int fac[SIZE],inv[SIZE],ifac[SIZE];
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
	fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;
	for(int re i=2;i<SIZE;++i){
		fac[i]=mul(fac[i-1],i);
		inv[i]=mul(inv[mod%i],mod-mod/i);
		ifac[i]=mul(ifac[i-1],inv[i]);
	}
}
inline void NTT(Poly &A,int len,int typ){
	for(int re i=0;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[j+k+i],t=mul(t2,w[d][k]);
		t2=dec(t1,t),Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A.begin()+1,A.begin()+len);
		for(int re i=0,inv=::inv[len];i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=0;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}

inline Poly operator+(cs Poly &a,cs Poly &b){
	Poly c=a;if(b.size()>a.size())c.resize(b.size());
	for(int re i=0;i<b.size();++i)Inc(c[i],b[i]);
	return c;
}

inline Poly operator*(Poly a,Poly b){
	int deg=a.size()+b.size()-1,l=1;
	while(l<deg)l<<=1;init_rev(l);
	a.resize(l),NTT(a,l,1);
	b.resize(l),NTT(b,l,1);
	for(int re i=0;i<l;++i)Mul(a[i],b[i]);
	NTT(a,l,-1),a.resize(deg);
	return a;
}

inline void FDT(Poly &A,int n,int typ){
	int l=1,deg=n<<1;
	while(l<deg)l<<=1;init_rev(l);
	Poly C(l,0);A.resize(l);
	for(int re i=0;i<n;++i)C[i]=(typ==-1&&(i&1))?mod-ifac[i]:ifac[i];
	NTT(A,l,1),NTT(C,l,1);
	for(int re i=0;i<l;++i)Mul(A[i],C[i]);
	NTT(A,l,-1),A.resize(n);
}

inline PP interpolation(int l,int r,cs Poly &A,cs Poly &coef){
	if(l==r)return PP({dec(0,l),1},{mul(A[l],coef[l])});
	int mid=l+r>>1;
	PP a=interpolation(l,mid,A,coef),b=interpolation(mid+1,r,A,coef);
	return PP(a.fi*b.fi,a.fi*b.se+b.fi*a.se);
}

int n;
Poly F,G,coef;

signed main(){
#ifdef zxyoi
	freopen("FFP_to_Poly.in","r",stdin);
#endif
	init_NTT();
	scanf("%d",&n);G.resize(n);coef.resize(n);
	for(int re i=0;i<n;++i)scanf("%d",&G[i]);
	FDT(G,n,1);
	for(int re i=0;i<n;++i)Mul(G[i],fac[i]);
	for(int re i=0;i<n;++i)coef[i]=mul(ifac[i],((n-i)&1)?ifac[n-i-1]:mod-ifac[n-i-1]);
	F=interpolation(0,n-1,G,coef).se;
	cout<<F<<"\n";
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值