多维高斯概率密度函数估计

多维高斯概率密度函数形式为 f ( x , μ , Σ ) = 1 ( 2 π ) d / 2 ∣ Σ ∣ 1 / 2 e − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) f(x,\mu,\Sigma)=\displaystyle\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}\Large e ^{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)} f(x,μ,Σ)=(2π)d/2Σ1/21e21(xμ)TΣ1(xμ)
其中 x x x μ \mu μ d d d 维向量, Σ \Sigma Σ d × d d \times d d×d的矩阵, Σ \Sigma Σ μ \mu μ 是待求参数。

{ x i } , i = 1 ∼ N \{x_i\}, i=1 \sim N {xi},i=1N 是符合该密度函数的 N N N 个样本,那么我们可以利用最大似然法(Maxium Likelihood)求待定参数。目标函数为: E ( μ , Σ ) = ∑ i = 1 N ln ⁡ f ( x i , μ , Σ ) = − N d 2 ln ⁡ ( 2 π ) − N 2 ln ⁡ ∣ Σ ∣ − 1 2 ∑ i = 1 N ( x i − μ ) T Σ − 1 ( x i − μ ) E(\mu,\Sigma)=\sum_{i=1}^N \ln f(x_i,\mu,\Sigma)=-\frac{Nd}{2}\ln (2\pi)-\frac{N}{2}\ln |\Sigma|-\frac{1}{2}\sum_{i=1}^N(x_i-\mu)^T\Sigma^{-1}(x_i-\mu) E(μ,Σ)=i=1Nlnf(xi,μ,Σ)=2Ndln(2π)2NlnΣ21i=1N(xiμ)TΣ1(xiμ)此时,我们假定 { x i } , i = 1 ∼ N \{x_i\}, i=1 \sim N {xi},i=1N满足独立同分布(independent and identical distribution, i.i.d)。

根据最大似然法的要求,我们要求 Σ \Sigma Σ μ \mu μ 使 E ( μ , Σ ) E(\mu,\Sigma) E(μ,Σ)的值最大,由于 E E E 是凸函数,故可以直接求使偏导数为 0 0 0 的参数。这里为了简化计算我们可以求 Σ − 1 \Sigma^{-1} Σ1 的偏导,因为行列式容易转换,而后面有一项矩阵如果进行转换回很麻烦,求出 Σ − 1 \Sigma^{-1} Σ1 其实也就是求出了 Σ \Sigma Σ
∂ E ∂ μ = − 1 2 ∑ i = 1 N [ Σ − 1 ( x i − μ ) + ( Σ − 1 ) T ( x i − μ ) ] × ( − 1 ) = 0 ∂ E ∂ ( Σ − 1 ) = N 2 Σ T − 1 2 ∑ i = 1 N ( x i − μ ) ( x i −   u ) T = 0 \begin{aligned} &\frac{\partial E}{\partial \mu}=-\frac{1}{2}\sum_{i=1}^N\bigg[\Sigma^{-1}(x_i-\mu)+(\Sigma^{-1})^T(x_i-\mu)\bigg]\times(-1)=0 \\\\ &\frac{\partial E}{\partial (\Sigma^{-1})}=\frac{N}{2}\Sigma^T-\frac{1}{2}\sum_{i=1}^N(x_i-\mu)(x_i-\,u)^T=0 \end{aligned} μE=21i=1N[Σ1(xiμ)+(Σ1)T(xiμ)]×(1)=0(Σ1)E=2NΣT21i=1N(xiμ)(xiu)T=0
显然,第二个式子好求,化简得 Σ T = 1 N ∑ i = 1 N ( x i − μ ) ( x i −   u ) T \Sigma^T=\frac{1}{N}\sum_{i=1}^N(x_i-\mu)(x_i-\,u)^T ΣT=N1i=1N(xiμ)(xiu)T可以看出来这是个对称矩阵,故 Σ = Σ T = 1 N ∑ i = 1 N ( x i − μ ) ( x i −   u ) T , Σ − 1 = ( Σ − 1 ) T \begin{aligned}\Sigma=\Sigma^T=\frac{1}{N}\sum_{i=1}^N(x_i-\mu)(x_i-\,u)^T, \Sigma^{-1}=(\Sigma^{-1})^T\end{aligned} Σ=ΣT=N1i=1N(xiμ)(xiu)TΣ1=(Σ1)T再看第一个式子 ∑ i = 1 N [ Σ − 1 ( x i − μ ) + ( Σ − 1 ) T ( x i − μ ) ] = 0    ⟹    2 ∑ i = 1 N [ Σ − 1 ( x i − μ ) ] = 0    ⟹    Σ − 1 ∑ i = 1 N ( x i − μ ) = 0    ⟹    ∑ i = 1 N ( x i − μ ) = 0    ⟹    μ = 1 N ∑ i = 1 N x i \begin{aligned}&\sum_{i=1}^N\bigg[\Sigma^{-1}(x_i-\mu)+(\Sigma^{-1})^T(x_i-\mu)\bigg]=0 \\\\ \implies&2\sum_{i=1}^N\bigg[\Sigma^{-1}(x_i-\mu)\bigg]=0 \\\\ \implies&\Sigma^{-1}\sum_{i=1}^N(x_i-\mu)=0 \\\\ \implies&\sum_{i=1}^N(x_i-\mu)=0 \\\\ \implies& \mu=\frac{1}{N}\sum_{i=1}^Nx_i \end{aligned} i=1N[Σ1(xiμ)+(Σ1)T(xiμ)]=02i=1N[Σ1(xiμ)]=0Σ1i=1N(xiμ)=0i=1N(xiμ)=0μ=N1i=1Nxi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值