机器学习
the record of study about machine learning
ツぃ☆ve芜情
我与春风皆过客,你携秋水揽星河
展开
-
Attention
CNN中的注意力机制原创 2020-03-05 17:17:31 · 784 阅读 · 0 评论 -
『GoogLeNet』inception
inception模块原创 2020-03-03 19:18:50 · 229 阅读 · 0 评论 -
logistic回归
比较简单的一种二分类方法,也是神经网络的一种适合初学者理解的方法。原创 2020-02-04 12:02:25 · 260 阅读 · 0 评论 -
k-均值聚类
K-均值聚类是聚类算法的最出名的一个,可以EM算法求解原创 2020-02-03 13:20:41 · 174 阅读 · 0 评论 -
EM算法求解高斯混合模型
混合高斯模型由于概率密度函数不是凸函数,没法求解,只好利用EM这种迭代算法不断逼近。原创 2020-02-03 12:33:49 · 356 阅读 · 0 评论 -
多维高斯概率密度函数估计
这里记录简略的证明,具体矩阵求导过程,以后再记录原创 2020-02-02 16:36:26 · 5307 阅读 · 0 评论 -
朴素贝叶斯(Naive Bayes)
朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。原创 2020-02-02 11:49:53 · 128 阅读 · 0 评论 -
AdaBoost
提升(boosting)方法是一种常用的特征选择方法,是集成学习方法之一,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。提升方法最具代表性的就是AdaBoost原创 2020-02-01 18:42:47 · 202 阅读 · 0 评论 -
主成分分析(Principle Component Analysis)
主成分分析(principle component analysis,PCA)是一种特征提取的方法,可以对输入数据进行降维,常用作数据处理原创 2020-01-31 14:52:25 · 879 阅读 · 0 评论 -
支持向量机(Support Vector Machine)
Support Vector Machine原创 2020-01-29 10:41:39 · 392 阅读 · 0 评论 -
感知机(perceptron)
感知机是二分类的线性分类模型,简单而易于实现,是神经网络和支持向量机的基础。原创 2020-01-23 18:02:03 · 854 阅读 · 0 评论 -
梯度下降法
梯度下降法是机器学习算法中常用到的学习方法,其一般有三种实现形式,这里简要说明它们的不同之处。原创 2020-01-22 12:26:48 · 1468 阅读 · 0 评论