logistic回归

1. logistic分布

X X X 是连续随机变量, X X X 服从logistic分布是指 X X X 具有下列分布函数和密度函数: F ( x ) = P ( X ≤ x ) = 1 1 + e − ( x − μ ) / γ f ( x ) = F ′ ( x ) = e − ( x − μ ) / γ γ ( 1 + e − ( x − μ ) / γ ) 2 \begin{aligned}F(x)=P(X\le x)=\displaystyle\frac{1}{1+e^{-(x-\mu)/\gamma}} \\\\ f(x)=F^{'}(x)=\displaystyle\frac{e^{-(x-\mu)/\gamma}}{\gamma(1+e^{-(x-\mu)/\gamma})^2} \end{aligned} F(x)=P(Xx)=1+e(xμ)/γ1f(x)=F(x)=γ(1+e(xμ)/γ)2e(xμ)/γ式中, μ \mu μ 为位置参数, γ > 0 \gamma\gt0 γ>0 为形状参数。其函数图像如下所示:

2. 二项logistic回归模型

二项logistic回归模型是如下的条件概率分布:
P ( Y = 1 ∣ x ) = e w ⋅ x + b 1 + e w ⋅ x + b P ( Y = 0 ∣ x ) = 1 1 + e w ⋅ x + b \begin{aligned} P(Y=1|x)=\displaystyle\Large\frac{e^{w\cdot x+b}}{1+e^{w\cdot x+b}} \\\\ P(Y=0|x)=\displaystyle\Large\frac{1}{1+e^{w\cdot x+b}} \end{aligned} P(Y=1x)=1+ewx+bewx+bP(Y=0x)=1+ewx+b1这里, x ∈ R n x\in\R^n xRn 是输入, Y ∈ { 0 , 1 } Y\in\{0,1\} Y{0,1} 是输出, w ∈ R n w\in\R^n wRn b ∈ R b\in\R bR 是参数, w w w 称为权值向量, b b b 称为偏置, w ⋅ x w\cdot x wx 称为 w w w x x x 的内积。

现再考察logistic回归模型的特点。一个事件的几率(odds)是指该事件发生的概率与该事件不发生的概率的比值。如果事件发生的概率是 p p p,那么该事件的几率是 p 1 − p \small\displaystyle\frac{p}{1-p} 1pp,该事件的对数几率(log odds)或logit函数是: l o g i t ( p ) = ln ⁡ p 1 − p logit(p)=\ln\frac{p}{1-p} logit(p)=ln1pp对logistic回归而言,有 l o g i t ( p ) = ln ⁡ P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = w ⋅ x + b logit(p)=\ln\frac{P(Y=1|x)}{1-P(Y=1|x)}=w\cdot x+b logit(p)=ln1P(Y=1x)P(Y=1x)=wx+b这就是说,在logistic回归模型中,输出 Y = 1 Y=1 Y=1 的对数几率是输入 x x x 的线性函数。或者说,输出 Y = 1 Y=1 Y=1 的对数几率是由输入 x x x 的线性函数表示的模型,即logistic回归模型。

3. 模型参数估计

logistic回归模型学习时,对于给定的训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } \displaystyle T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} T={(x1,y1),(x2,y2),,(xN,yN)},其中, x i ∈ R n , y i ∈ { 0 , 1 } x_i\in \R^n, y_i\in \{0,1\} xiRn,yi{0,1},可以应用极大似然估计法估计模型参数,从而得到logistic回归模型。

设: P ( Y = 1 ∣ x ) = π ( x ) , P ( Y = 0 ∣ x ) = 1 − π ( x ) P(Y=1|x)=\pi(x),\quad P(Y=0|x)=1-\pi(x) P(Y=1x)=π(x),P(Y=0x)=1π(x)
其中, π ( x ) = e w ⋅ x + b 1 + e w ⋅ x + b \large\pi(x)=\displaystyle\frac{e^{w\cdot x+b}}{1+e^{w\cdot x+b}} π(x)=1+ewx+bewx+b,则似然函数为 ∏ i = 1 N [ π ( x i ) ] y i [ 1 − π ( x i ) ] 1 − y i \large\displaystyle\prod_{i=1}^N[\pi(x_i)]^{y_i}[1-\pi(x_i)]^{1-y_i} i=1N[π(xi)]yi[1π(xi)]1yi对数似然函数为
L = ∑ i = 1 N [ y i ln ⁡ π ( x i ) + ( 1 − y i ) ln ⁡ ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i ln ⁡ π ( x i ) 1 − π ( x i ) + ln ⁡ ( 1 − π ( x i ) ) ] = ∑ i = 1 N [ y i ( w ⋅ x i + b ) − ln ⁡ ( 1 + e w ⋅ x i + b ) ] \begin{aligned}\Large\displaystyle L=&\sum_{i=1}^N\bigg[y_i \ln\pi(x_i)+(1-y_i)\ln\Big(1-\pi(x_i)\Big)\bigg] \\\\ =&\sum_{i=1}^N\bigg[y_i \ln\frac{\pi(x_i)}{1-\pi(x_i)}+\ln\Big(1-\pi(x_i)\Big)\bigg]\\\\ =&\sum_{i=1}^N\Big[y_i (w\cdot x_i+b)-\ln(1+e^{w\cdot x_i+b})\Big] \end{aligned} L===i=1N[yilnπ(xi)+(1yi)ln(1π(xi))]i=1N[yiln1π(xi)π(xi)+ln(1π(xi))]i=1N[yi(wxi+b)ln(1+ewxi+b)] L ( w ) L(w) L(w) 求极大值,即可得到 w w w的估计值,一般采用梯度下降法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值