【集合论】DNF天界必修:从元素到至高上界

Q:本文是讲DNF的吗?

A:不,本文是标题党,讲的是数学。所谓的至高上界其实是最大上界。属于大学一年级内容。因此,阅读本文至少需要高一的集合知识。如果你对计算机编程感兴趣,且还没有系统性学过集合论,那么可以尝试阅读这篇教程。另外,你可以参加mooc课程来进行学习:集合论与图论(上)_哈尔滨工业大学_中国大学MOOC(慕课) (icourse163.org)

Q:集合论的基本概念是什么?

A: 集合论或集论是数学的一个基本分支,它研究集合(即由一些明确界定的对象组成的整体)的性质、结构以及集合间的关系。以下是集合理论中的一些基本概念:

  1. 集合(Set: 集合是最基本的数学对象,它是由一些明确的、互不相同的元素组成的,这些元素可以是任何事物,包括数字、符号、其他集合等。集合本身被视为一个独立的、不考虑元素顺序和重复性的实体。
  2. 元素(Element: 集合中的每一个项目称为元素。如果一个对象属于某个集合,就说这个对象是该集合的元素。
  3. 成员关系(Membership: 用符号 "" 表示,读作属于。若元素 𝑎 属于集合𝐴,记作 𝑎∈𝐴;若 𝑎 不属于𝐴,则记作 𝑎∉𝐴
  4. 空集(Empty SetNull Set: 符号表示为  或者 {},指的是没有任何元素的集合。
  5. 子集(Subset: 如果集合𝐴 中的每一个元素都是集合 𝐵 的元素,则称𝐴 𝐵 的子集,记作𝐴⊆𝐵。特别地,任何集合都是它自身的子集,且空集是所有集合的子集。
  6. 真子集(Proper Subset: 如果𝐴 𝐵 的子集,并且𝐴 不等于 𝐵,则称𝐴 𝐵 的真子集,记作𝐴𝐵
  7. 并集(Union: 集合𝐴 和集合 𝐵 的并集,记作𝐴𝐵,包含了所有属于𝐴 𝐵 的元素。
  8. 交集(Intersection: 集合𝐴 和集合 𝐵 的交集,记作𝐴𝐵,只包含了同时属于𝐴 𝐵 的元素。
  9. 补集(Complement: 对于一个集合𝐴 相对于全集 𝑈 的补集,记作𝐴,包含了所有属于 𝑈 但不属于𝐴 的元素。
  10. 连续统集(Continuum):即实数集 R 的基数。实数集是数学中最基本且最重要的连续统的例子,它包含了所有的有理数和无理数,能够形成一个连续的线,没有缝隙
  11. 笛卡尔积(Cartesian Product: 两个集合𝐴 𝐵 的笛卡尔积,记作𝐴×𝐵,是由所有形式为 (𝑎,𝑏) 的有序对组成的集合,其中 𝑎𝐴 𝑏𝐵
  12. 链(Chain 在数学中,特别是在序理论和图论中,链是一个偏序集或序贯结构,其中的任意两个元素都是可以比较的。也就是说,在链中,对于任意两个不同的元素xy,要么x≤y,要么y≤x。形象地说,链可以被想象成一个线性的、有序的序列,没有分叉或循环。在图论的上下文中,链通常指的是路径,即由边连接起来的顶点序列,其中每一对相邻的顶点由一条边相连,且没有重复的边或顶点。
  13. 集的势(Cardinality of a Set 集的势,也称为集合的基数,是衡量集合中元素数量的一个概念。对于有限集,势就是集合中元素的实际数量。对于无限集,由于不能简单地计数,势的概念更为抽象,通常通过等势(bijection,即一对一对应)来定义。如果两个集合之间存在一个双射函数,就说这两个集合有相同的势。自然数集的势被标记为(阿列夫零),它是最小的无限势。
  14. 可数集(Countable Set 可数集是指与自然数集N(或其某个子集)具有相同势的集合。这意味着存在一个一一对应的关系,可以把可数集中的每一个元素与自然数集中的一个自然数配对。因此,可数集既可以是有限的,也可以是无限的,但如果是无限的,则称作无限可数集。所有自然数、整数、有理数构成的集合都是可数集的例子,而实数集则是一个典型的不可数集,因为不存在它与自然数集之间的一一对应。可数集的概念是理解无限集合的结构和大小的重要工具。
  15. 复合函数(Composition of Functions):是指将两个或多个函数组合成一个新函数的过程。具体来说,如果有两个函数fg,其中fA映射到B(记作f:A→B),而gB映射到C(记作g:B→C),那么复合函数gfA中的元素首先通过f映射到B,然后再通过g映射到C。复合函数的定义是:对于所有xA(gf)(x) = g(f(x))。简而言之,复合函数就是先执行一个函数,然后将结果作为另一个函数的输入。
  16. 可数无限集合(Countably Infinite Sets:这类集合的元素可以与自然数集合(即所有正整数的集合)建立一一对应关系。最典型的例子是整数集合和有理数集合。可数无限集合的基数称为阿列夫零(Aleph-null,记作),表示最小的无限基数。
  17. 不可数无限集合(Uncountably Infinite Sets:与可数集合不同,不可数集合无法与自然数集合建立一一对应,即不存在与自然数集合的双射关系。实数集合是最著名的不可数集合实例,它包含所有的有理数和无理数。不可数集合的基数大于阿列夫零,最常见的不可数基数是阿列夫一(Aleph-one,记作),但需要注意的是,并非所有不可数集的基数都是;基数理论中存在无数多个不同的无穷基数。
  18. 基数(Cardinality):数(或势)是一个集合中不同元素数量的测度,即使是无穷集合,也可以比较它们的基数大小。对于有限集合,基数就是集合中元素的实际数目。然而,对于无穷集合,基数的概念更加抽象,它关注的是集合大小的比较,而不涉及具体的计数。基数(或势)是一个集合中不同元素数量的测度,即使是无穷集合,也可以比较它们的基数大小。对于有限集合,基数就是集合中元素的实际数目。然而,对于无穷集合,基数的概念更加抽象,它关注的是集合大小的比较,而不涉及具体的计数。
  19. 加标集族(Indexed Family of Sets 加标集族,又称为索引集族,是指一个集合的集合,其中每个集合都有一个特定的标识符或索引,这个索引来自于一个被称为索引集的集合。形式上,如果有一个索引集 𝐼 和一个到集合的映射 𝑓:𝐼𝑃(𝑋),其中 𝑃(𝑋) 表示集合 𝑋 的所有子集构成的集合,那么 {𝑓(𝑖):𝑖𝐼} 就构成了一个加标集族,通常记作 {Ai}iI 或简写为 {Ai}。每个 Ai 是原集合的一个子集,并且通过索引 i 可以唯一确定每一个子集。
  20. 选择公理(Axiom of Choice, AC 选择公理是集合论中的一条公理,它断言对于任何非空的加标集族 {Ai}iI,其中每个 Ai 都是非空集,都存在一个选择函数f:IiIAi,使得对于所有的 iI,有 f(i)Ai。简而言之,选择公理保证了我们总能在每个非空集合中挑选出一个元素,并且可以做到对所有集合同时进行这样的选择,即使这个集族是无限的甚至是不可数的。
  21. 基数的比较: 在基数理论中,基数的比较通常涉及确定两个集合是否具有相同的基数,或者哪个集合的基数更大。基数的比较基于函数的存在性:

1)如果存在集合𝐴到集合𝐵的双射,则称𝐴𝐵的基数相等,记作|A| = |B|

2)如果存在从𝐴𝐵的满射但没有双射,则说|A| ≤ |B|

3)如果存在从𝐵𝐴的满射但没有从𝐴𝐵的双射,则|B| ≤ |A|

这些基本概念构成了集合论的基础,并在数学的各个领域中广泛运用,作为描述和分析更复杂数学结构的基石。

Q:什么是一个集到另一个集的映射?

A: 一个集到另一个集的映射(MappingFunction)是数学中一种基本的概念,它描述了两个集合之间元素的对应关系。具体来说,如果有两个非空集合𝐴(称为定义域或原像集合)和 𝐵(称为值域或像集合),按照某种规则 𝑓,对于𝐴中的每一个元素 𝑎,都能在 𝐵 中找到唯一确定的一个元素 𝑏 与之对应,这种对应关系就称为从𝐴 𝐵 的映射,记作 𝑓:𝐴→𝐵

在映射中:

  • 元素 𝑎 称为原象;
  • 与 𝑎 对应的 𝑏 称为象,记作 𝑏=𝑓(𝑎);
  • 集合𝐴中所有元素的象组成的集合称为映射的值域,记作 𝑓(𝐴),它是 𝐵 的子集。

映射的关键特性是定义域中的每个元素都有对应,并且这种对应是唯一的,即不存在一个𝐴中的元素对应 𝐵 中多个元素的情况。映射可以是满射(Surjective),意味着 𝐵 中的每一个元素至少被𝐴中的一个元素映射;可以是单射(Injective),意味着𝐴中不同的元素映射到 𝐵 中不同的元素;如果同时满足单射和满射,则称为双射(Bijective)。

映射的概念是数学分析、代数、几何以及现代数学的许多分支中极其重要的基础概念,它不仅用于描述数学对象之间的关系,还是研究函数性质、建立数学模型和解决实际问题的有力工具。

让我们通过一个简单例子来说明集到另一个集的映射概念。

假设我们有两个集合:

  • 集合𝐴={1,2,3},这是我们定义域(Domain)。
  • 集合 𝐵={4,5,6,7},这是我们的值域(Codomain)。

我们定义一个映射 𝑓:𝐴→𝐵 如下:

  • 对于𝐴中的每个元素,𝑓 将其映射到 𝐵 中比它大3的元素。

根据这个规则,映射 𝑓 可以具体描述为:

  • 𝑓(1)=4,因为 1+3=4;
  • 𝑓(2)=5,因为 2+3=5;
  • 𝑓(3)=6,因为 3+3=6。

在这个例子中:

  • 定义域𝐴中的所有元素都有对应的象在值域 𝐵 中;
  • 每个𝐴中的元素都按照规则唯一地映射到 𝐵 中的一个元素;
  • 映射 𝑓 是单射(Injective),因为𝐴中的每个元素映射到 𝐵 中不同的元素,但由于 𝐵 中还有未被映射到的元素(7),所以 𝑓 不是满射(Surjective)。

通过这个简单的例子,可以直观地理解映射是如何将一个集合中的元素按照特定规则对应到另一个集合中的元素的。

Q:什么是单射和双射?

A:在数学,特别是在集合理论和函数理论中,"单射"Injective)和"双射"Bijection)是描述函数性质的两个重要概念:

单射(Injective Function:

  • 单射,指的是一个函数 𝑓:𝐴→𝐵,其中集合𝐴是定义域,集合 𝐵 是值域,对于𝐴中的任何两个不同的元素 𝑥1​ 和 𝑥2​,它们在 𝐵 中的像 𝑓(𝑥1) 和 𝑓(𝑥2) 也是不同的。换句话说,没有两个不同的输入会映射到同一个输出。这意味着函数在定义域内的元素间保持了唯一性,但并不保证值域中的每个元素都被映射到。

双射(Bijection:

  • 双射是同时具备单射和满射性质的函数。这意味着对于函数 𝑓:𝐴→𝐵,它是单射的,即每个输入都对应唯一的输出;同时也是满射的,即值域 𝐵 中的每个元素都有至少一个定义域𝐴中的元素与之对应。换言之,双射函数建立了𝐴和 𝐵 之间的一个完美一对一的对应关系,使得𝐴和 𝐵 在元素数量上相等(即𝐴和 𝐵 是等势的),且每个𝐴中的元素都能精确匹配到 𝐵 中的一个元素,反之亦然。

简而言之,单射确保了没有重复映射(每个输出最多对应一个输入),而双射在此基础上还要求所有可能的输出都被使用(每个输出恰好对应一个输入),从而形成了两个集合间的完全对应。

Q:什么是有序集?

A:有序集是数学中的一个重要概念,它指的是在集合的元素之间定义了一种特定的顺序关系。这种顺序可以是全序、偏序或是其他类型的序关系。下面是有序集的一些关键特征和定义:

  1. 序关系:有序集的核心在于其上的序关系,这是一种定义在集合元素对上的二元关系,通常用符号 <, ≤, > 或 ≥ 来表示。序关系必须满足以下基本性质:
    • 自反性:对于所有元素 𝑎,有 𝑎≤𝑎≤a(每个元素至少和自己相等)。
    • 反对称性:如果 𝑎≤𝑏 且 𝑏≤𝑎,则 𝑎=𝑏(不可能有两个不同的元素互相小于对方)。
    • 传递性:如果 𝑎≤𝑏 且 𝑏≤𝑐,则 𝑎≤𝑐(顺序是可传递的)。
  2. 全序集:如果一个集合上的序关系满足上述三个性质,并且任意两个不同的元素 𝑎 和 𝑏 都可以比较(即要么 𝑎≤𝑏 要么 𝑏≤𝑎),这样的集合被称为全序集或线性序集。
  3. 偏序集:如果序关系满足自反性、反对称性和传递性,但不一定要求所有元素都能相互比较(即可能存在不可比较的元素对),这样的集合称为偏序集。
  4. 良序集:是一种特殊的全序集,要求每个非空子集都有一个最小元素。换句话说,良序集中的任何非空子集都可以通过序关系确定一个最小的元素。

有序集的概念在数学的多个分支中都有应用,如集合论、拓扑学、序理论和计算机科学中的数据结构(如有序列表、优先队列等)。通过在集合上定义序关系,我们可以研究集合元素的排序、极限行为、上界和下界等问题。

Q:有序集中的极小元和极大元是什么?

A:在有序集(无论是全序集还是偏序集)中,极小元和极大元是描述集合内部元素相对大小的特殊元素。

简单来说,假设有一个集合Aam均属于集合A中的元素。那么,当𝑚𝑎 成立时,那么 m 被称为集合A 的一个极小元。反之,当𝑎𝑚成立时,那么 m 被称为集合A 的一个极大元。

相关定义如下:

  1. 极小元(Minimal Element:对于集合𝐴中的元素 𝑚,如果 𝑚 满足对于所有 𝑎𝐴,当 𝑎 可以与 𝑚 比较时(即 𝑎 𝑚 有顺序关系),都有 𝑚𝑎,则称 𝑚 𝐴的一个极小元。注意,极小元不一定是唯一的,即集合中可以有多个元素都是极小元。极小元意味着在集合中,没有其他可比较的元素比它更小。
  2. 极大元(Maximal Element:与极小元相对,对于集合𝐴中的元素 𝑀,如果对于所有 𝑎𝐴,当 𝑎 可以与 𝑀 比较时,都有 𝑎𝑀,则称 𝑀 𝐴的一个极大元。同样,极大元也不一定是唯一的,集合可以有多个极大元。极大元意味着在集合中,没有其他可比较的元素比它更大。

简而言之,极小元是集合中“尽可能小”的元素,而极大元则是“尽可能大”的元素,这里的“小”和“大”是依据集合中的序关系来定义的。重要的是要注意,极小元和极大元的定义允许集合中有不可与其他所有元素比较的元素存在,因此即使存在极小元或极大元,集合中也可能存在其他元素既不是任何元素的极小元也不是极大元。

Q:什么是下界和上界?

A:在有序集合的上下文中,下界(Lower Bound)和上界(Upper Bound)是用来描述集合中元素的共同约束条件的两个概念,具体定义如下:

  1. 下界(Lower Bound:对于集合𝐴中的所有元素,如果存在一个元素 𝐿(不一定属于𝐴),使得对于所有 𝑎∈𝐴,都有 𝐿≤𝑎,则称 𝐿是集合𝐴的一个下界。换句话说,下界是小于或等于集合中所有元素的一个数。一个集合可能有多个下界,也可能没有明确的下界(例如,如果集合无上界)。
  2. 上界(Upper Bound:与下界相对,对于集合𝐴中的所有元素,如果存在一个元素 𝑈(同样不一定属于𝐴),使得对于所有 𝑎∈𝐴,都有 𝑎≤𝑈,则称 𝑈是集合𝐴的一个上界。上界是大于或等于集合中所有元素的一个数。如同下界,一个集合也可以有多个上界,或者没有明确的上界(如果集合无界)。
  3. 有界(Bounded):如果一个集合既有上界也有下界,则称为有界。有界集合不一定意味着它包含某个特定的最小值或最大值;下界和上界可以但不必是集合中的实际元素。
  4. 无界(unbounded)指不存在上界或下界的情况,即集合中的元素可以无限大地增大或减小。

特别地,如果一个集合有下界(或上界),并且这些下界(或上界)中存在一个最大的下界(或最小的上界),那么这个元素分别被称为集合的最小下界(InfimumGreatest Lower Bound, GLB)和最大上界(SupremumLeast Upper Bound, LUB。最小下界不一定属于集合本身,但它是最接近集合中所有元素的小值且任何更大的数都不是下界;最大上界也是如此,是最接近集合中所有元素的大值且任何更小的数都不是上界。

上下界的概念在分析实数集合、序理论以及优化问题中有广泛应用。

Q:难道一个集合还能存在多个值不相等的下界吗?为什么说最小下界?

A:确实,一个集合可以存在多个不同的下界,这是因为下界的定义只要求该元素不大于集合中的任何元素,而没有要求它是唯一的。考虑一个简单的例子:

假设集合𝐴={2,3,4},如果我们考虑常规的数值大小关系,那么任何小于或等于2的数都是集合𝐴的下界,比如1是一个下界,0也是一个下界,甚至是-1-2等都是下界。这就表明集合可以有多个不同的下界。

当我们提到最小下界(或称为下确界infimum),我们是在寻找所有下界中最大的那个。在上面的例子中,尽管10-1等都是下界,但2也是下界,并且是所有这些下界中的最大值。因此,2就是集合𝐴的最小下界,它不仅是下界,而且是在所有下界中最大的,满足了既是下界又在所有下界中最小的条件(在本例中是最大的,因为我们通常考虑非负的界限情况,但在更一般的意义上,我们寻找的是在偏序意义下的最大)。

总结来说,一个集合可以有多个下界,但最小下界(如果存在)是这些下界中在序关系下最大的一个,确保了在所有可能的下界中选择最接近集合内部元素底部的界限。

Q:那么这个最小下界算不算集合A中的最小元?

A:最小下界(下确界)并不一定就是集合中的元素。最小下界是指所有下界中最大的那个,它定义了集合中所有元素的底部界限,但它本身并不需要是集合内的元素。

以之前的集合𝐴={2,3,4} 为例,最小下界是2,而2恰好也是集合中的一个元素。但如果集合改为 𝐵={1/2,2/3,3/4,...},即所有形如 𝑛/(𝑛+1)的数构成的集合(其中𝑛是正整数),则这个集合没有最小元素(因为可以无限接近于0,但永远不会达到0),但它的最小下界是0,即使0并不属于集合 𝐵

因此,最小下界可能是集合中的元素,也可能不是,这取决于集合的具体内容和定义域上的序关系。当集合有最小元素时,这个最小元素同时也是集合的最小下界,因为它满足下界的所有条件,并且是最小的。

让我们复习一下:

如果aE的一个下界,并且aE,那么a成为E的最小元。

如果bE的一个上界,并且bE,那么b成为E的最大元。

Qxy=inf{x,y}xy=sup{x,y}是一样的吗?区别是什么?

A:不,𝑥𝑦=inf{𝑥,𝑦} 𝑥∨𝑦=sup{𝑥,𝑦} 表示的是两个不同的概念,尽管它们在形式上相似,都是关于两个元素的某种结合运算与边界值的关系,但含义不同:

  • 𝑥∧𝑦=inf{𝑥,𝑦}: 这表示 𝑥 𝑦 运算(通常在格论中被称为乘积“meet”),结果是 𝑥 𝑦的下确界(Infimum),即所有同时是 𝑥 𝑦下界的元素中的最大者。在实数或其他全序集中,如果 𝑥 𝑦可以比较,这个值通常是两者中较小的一个。
  • 𝑥∨𝑦=sup{𝑥,𝑦}: 相对地,这表示 𝑥 𝑦运算(在格论中也叫“join”),结果是 𝑥 𝑦的上确界(Supremum),即所有同时是 𝑥 𝑦上界的元素中的最小者。在实数集等全序集中,它通常是 𝑥 𝑦中较大的那个值。

简而言之,𝑥∧𝑦 寻找的是 𝑥 𝑦共同的底线,反映了一种最小化原则,而 𝑥∨𝑦则寻找的是它们的上限,体现了一种最大化原则。这两个操作在逻辑、集合论、序理论及众多数学和计算机科学领域有着广泛的应用。

Q:交集和交运算很像,有什么区别吗?

A:你应该会发觉在集合论中,如果𝐴𝐵是两个集合,则A∩B 表示同时属于集合𝐴 𝐵 所有元素的集合,即两个集合的共同部分。这是集合的一种相交概念,关注的是元素的共存性。而在这里是指 x y 的所有上界的最小元素,是来自格论(Lattice theory)或序理论(Order theory)中的符号表示,而不是集合论中的标准交集表示。

主要区别在于:

  1. 对象不同:x∧y在序理论中通常应用于偏序集的元素,而A∩B 应用于集合的元素。
  2. 操作意义不同:x∧y寻找的是 x 和 y 在偏序集中的一个共同的“最小上界”,它不一定要求 x 和 y 之间有直接的包含关系;而集合的交集A∩B 明确寻找的是两个集合共有的成员。
  3. 应用领域不同:序理论中的“交运算”更广泛地应用于逻辑、数学结构等抽象领域,而集合的交集是集合论的基本概念,广泛应用于各个数学分支及实际问题中。

当然,在某些特定的偏序集,如集合的包含关系(幂集上的偏序)中,xy可以与集合的交集相对应,这时 xy确实表示集合 𝑥和集合 𝑦 的交集。但在更一般的情况下,这两个概念是有本质区别的。

此外,假设你已经熟知了A∩B 而不熟悉xy,那么你还可以通过下面这个例子来观察 𝑥∧𝑦=inf{𝑥,𝑦} 𝑥∨𝑦=sup{𝑥,𝑦} 的概念。

示例数组

考虑一个数组𝐴=[10,5,8,12,3]

计算一对元素的 𝑥∧𝑦=inf{𝑥,𝑦}

选取数组中的两个数,比如说 𝑥=10 𝑦=8

  • 对于 𝑥和 𝑦,它们的下确界(inf{𝑥,𝑦}inf{x,y})是两者中较小的数,因为在任何情况下,这个较小的数都是一个共同的下界。所以,在这个例子中,𝑥∧𝑦=inf{10,8}=8。
计算一对元素的 𝑥∨𝑦=sup{𝑥,𝑦}

仍然考虑 𝑥=10 𝑦=8

  • 它们的上确界(sup{𝑥,𝑦})是两者中较大的数,因为任何大于或等于 𝑥和 𝑦 的数都必须至少这么大。因此,𝑥∨𝑦=sup{10,8}=10。

扩展到整个数组

我们还可以考虑整个数组𝐴的最小元素和最大元素,这实际上是对整个数组应用下确界和上确界的概念:

  • 整个数组的下确界(最小元素):对于数组𝐴,所有元素的下确界就是数组中的最小值,即 inf{𝐴}=min(𝐴)=3。
  • 整个数组的上确界(最大元素):所有元素的上确界则是数组中的最大值,即 sup{𝐴}=max(𝐴)=12。

这个例子展示了如何在一组数值数据中识别特定元素对的最小共同下界(下确界)和最大共同上界(上确界),同时也展示了如何将这些概念应用于整个数组以找到全局的最小值和最大值。

Q子集族有并集和交集吗?并集和交集也能映射吗?

A如果 {𝐴𝑗}𝑗𝐽是集合 𝐸 的一个子集族,其中 𝐽 是指标集,那么这个子集族的并集交集可以这样表示和定义:

        并集(Union:这个族中所有集合的并集包含了属于这些集合中任何一个元素。 {Aj}jJ 是集合 𝐸 的一个子集族,其中 𝐽 是指标集。这个族的所有子集的并集定义为包含所有属于 {Aj}jJ 中至少一个集合的元素的集合,记作:

 

这里,∃𝑗∈𝐽表示存在某个𝑗属于𝐽,后面跟的是这个存在的𝑗需满足的条件,即xAj

这意味着,如果一个元素至少属于 {𝐴𝑗}𝑗𝐽中的一个集合,那么它就属于这些集合的并集。

        交集(Intersection:这个族中所有集合的交集包含了同时属于这些集合中每一个元素。换句话说,这个族的所有子集的交集定义为包含所有同时属于{𝐴𝑗}𝑗𝐽中每个集合的元素的集合,记作:

这里,jJ表示对于所有j属于J,后面跟的是所有这些j都需满足的条件,即xAj

这意味着,只有当一个元素属于 {Aj}jJ 中的所有集合时,它才属于这些集合的交集。

简单来说,并集是取所有集合中的元素合在一起,不考虑元素是否在所有集合中都出现;而交集则是只取所有集合共有的元素。这和高中学到可以说完全一致,只是集合更‘大’了。

对于任意函数 f:EF 和由集合 𝐸 的子集构成的族 {Aj}jJ,以及由集合 F 的子集构成的族 {Bj}jJ,存在几个重要的等式,这些等式反映了函数的性质及其与子集之间关系:

        直接映射的并集:

这个等式说明,函数 𝑓将集合 {Aj}jJ 的并集映射到其各自映射像的并集。这意味着,函数 𝑓将所有 Aj 中的元素映射到 𝐹 后,再取并集,等同于先对每个 Aj 分别取映射像再取并集。

        直接映射的交集:

注意这里是一个包含关系而非等式。这意味着,函数 𝑓将集合 {Aj}jJ 的交集映射到的集合,被 f(Aj) 的交集所包含。这是因为如果一个元素同时属于所有 Aj,它的映射一定在所有 f(Aj) 中,但 𝑓的映射像的交集可能不包含所有原交集中元素的映射,除非 𝑓是单射(即一对一映射)。

  1. 逆映射的并集:

 

这个等式说明,函数 𝑓的逆像(预像)操作对并集的行为与直接映射相反,即函数的逆像是将 𝐹 中集合的并集逆映射到 𝐸 中相应集合的并集。

  1. 逆映射的交集:

 

这个等式表明,函数 𝑓的逆像对交集的操作保持了交集的性质,即函数将 𝐹 中集合的交集逆映射到 𝐸 中相应集合的交集。

这些等式的意义在于,它们揭示了函数作用于集合及其子集时,如何保持或改变集合的并集和交集的性质,这对于理解和分析函数的性质,尤其是在处理函数的组合、图像和逆像时,是非常重要的。

注意,逆映射本身不直接拥有并集交集的概念,因为它是函数之间一对一(或多对一,如果考虑满射而非双射的情况)的关系描述。但是,当你讨论与这些函数相关的集合时,集合的并集和交集仍然是有意义且常用的集合运算。

Q:在笛卡尔积的介绍中,我了解到了俩个集合的笛卡尔积。但是如果有n个集呢?或者这些集相等呢?对于集族(由子集构成的族)来说,它的笛卡尔积又是什么样的?

A当有n个集合时,它们的笛卡尔积是这n个集合中各取一个元素的所有可能有序组合的集合。具体来说,如果有集合 𝐴1,𝐴2,...,𝐴𝑛,它们的笛卡尔积 𝐴𝐴2×...×𝐴𝑛 定义为所有形如 (𝑎1,𝑎2,...,𝑎𝑛)n元组的集合,其中 aiAi 对于所有的 i=1,2,...,n

例如,如果A={1,2} 并且考虑 A 与自身的三次笛卡尔积,那么结果是:

𝐴×𝐴×𝐴={(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)}

当这些集合相等时,即都是同一个集合 A,并且我们考虑 n 次笛卡尔积,那么我们实际上是在讨论 An。这个概念在计算机科学中尤为重要,特别是在处理多维数组、状态空间或组合问题时。

如果 A m 个元素,则 An 将会有mn 个元素,这表明随着集合数量的增加,笛卡尔积的元素数量会迅速增长,体现了组合爆炸的可能性。

对于集族(即多个集合的集合)来说,如果考虑集族中的所有集合两两进行笛卡尔积,那么结果会是一个更大的集合,包含了所有可能的有序对,其中每个有序对的第一个元素来自集族中的一个集合,第二个元素来自另一个不同的集合。但是,通常当我们谈论集族的笛卡尔积时,我们并不是指集族中所有集合相互之间的两两笛卡尔积,而是指集族中所有集合的所有元素按照对应位置组合形成的有序元组的集合。

具体来说,如果有集族 {Aj}jJ,其中每个Aj 是一个集合,而 𝐽是索引集,那么集族的笛卡尔积定义为所有形如 (aj)jJ 的有序对序列的集合,其中 ajAj 对于所有的jJ。这可以写作:

 

这意味着,如果集族包含 𝑛n 个集合,每个集合的元素数量分别为A1,A2,...,An,则集族的笛卡尔积将有A1×A2×...×An 个元素。

例如,如果有集族{A,B,C},其中A={1,2} B={a,b} C={+,−},则集族的笛卡尔积为:

A×B×C={(1,a,+),(1,a,−),(1,b,+),(1,b,−),(2,a,+),(2,a,−),(2,b,+),(2,b,−)}

请注意,如果集族中的某些集合实际上是相同的集合,那么笛卡尔积的计算方式不变,但可能会导致结果中的某些元素重复出现,反映同一集合元素之间的所有可能组合。

Q:即使存在极小元或极大元,集合中也可能存在其他元素既不是任何元素的极小元也不是极大元。举例一个。

A:考虑集合 {2, 3, 4, 5, 6},其中的元素均为正整数,并考虑偏序关系 "整除"(即 𝑎𝑏 当且仅当 𝑎 能被 𝑏 整除)。在这个偏序集中:

  • 极小元是 2,因为没有比 2 更小的数能被集合中的任何数整除(在自然数范围内,自然数的最小正整数是 1,但1不在我们的集合中,所以2是集合中的最小元素)。
  • 极大元不存在,因为没有集合中的数能整除所有其他数。
  • 元素 3、4、5、6 既不是极小元也不是极大元。它们各自有比它们小的元素(根据整除关系,比如 2 能整除 4 和 6,但不能整除 3 和 5)且也有比它们大的元素(在这个集合的上下文中,没有一个数能“整除”所有其他数作为极大元,但它们各自有不被自己整除的数)。

这个例子展示了即使集合中有极小元,也可以有其他元素既不是极小元也不是极大元的情况。同时,它也说明了极大元可能不存在的情况。

Q:集合中的关系的合成运算是什么

A合中的关系合成运算是指在离散数学中,特别是在关系论的领域内,将两个关系组合成一个新的关系的操作。这种运算经常在讨论多个关系如何共同作用于元素对时出现。具体来说,如果 𝑅 是从集合 𝐴 𝐵 的关系,而 𝑆 是从集合 𝐵 𝐶的关系,那么我们可以定义 𝑅 𝑆 的合成关系,记作 𝑅𝑆,这是一个从集合 𝐴 到集合 𝐶的关系。

合成关系 𝑅𝑆 包含的所有元素对 (𝑎,𝑐),满足存在 𝐵 中的某个元素 𝑏,使得 𝑎 𝑏 之间在关系 𝑅 中,同时 𝑏 𝑐 之间在关系 𝑆 中。形式上,可以表示为:

𝑅𝑆={(𝑎,𝑐)∃𝑏𝐵:(𝑎,𝑏)𝑅(𝑏,𝑐)𝑆}

这意味着,如果从 𝐴开始,通过 𝑅 能到达某个中间元素 𝑏,并且从这个 𝑏 出发通过 𝑆 能到达 𝐶 中的某个元素 𝑐,那么在合成关系 𝑅𝑆 中就直接有关联从 𝐴 的元素到 𝐶 的这个元素。

需要注意的是,关系的合成运算并不一定满足交换律,即一般情况下 𝑅𝑆𝑆𝑅,除非 𝑅 𝑆 满足特定条件。这是因为合成的顺序很重要,先通过哪个关系进行匹配会影响到最终结果。此外,合成运算要求 𝑅 的陪域与 𝑆 的定义域相同,这样才能保证中间元素 𝑏 的存在性。

Q:集合的划分是什么?

A:集合的划分是将一个集合划分为若干个互不相交的子集(称为块或者类),并且这些子集的并集等于原集合,每个集合内的元素彼此不再进行进一步的划分。等价关系与集合的划分有着密切的关系。

具体来说,给定集合𝐴上的一个等价关系,我们可以根据这个关系将集合A划分为一系列等价类。每个等价类包含了所有与其中一个元素等价的所有元素,即对于集合𝐴中的任一元素𝑎,其所在的等价类[a]定义为所有与𝑎等价的元素集合,即[𝑎]={𝑥𝐴𝑎∼𝑥}。这些等价类互不相交,且它们的并集正好是原集合𝐴

这样的划分称为由等价关系生的商集,记作𝐴/,其中每个等价类可以视为商集中的一个元素。这个过程可以看作是从原始集合到其等价类集合(即商集)的一种自然映射,每个原集合的元素都被映射到它所在的等价类上

课后作业

1:偏序关系中的八个特殊元分别是什么?

2:等价关系是一种特殊的二元关系,它满足自反性,反对称性,传递性。请问它满足的这些是什么?

阅读材料

康托尔(Georg Cantor)通过著名的对角论证法证明了实数集合是不可数的,从而展示了存在不同大小的无穷集合。对角论证法的基本思想是构造一个新元素,该元素不在给定的序列中,以此来表明原序列无法包含所有可能的元素,从而证明集合的不可数性。

康托-伯恩斯坦定理(Cantor-Bernstein TheoremCantor-Bernstein-Schroeder Theorem)是集合论中的一个重要结果,它由乔治·康托尔首先提出并在后续由菲利克斯·伯恩斯坦和恩斯特·施罗德等人独立证明。该定理提供了一种判断两个无穷集合基数是否相等的方法,是基数比较理论中的一个基本工具。

康托-伯恩斯坦定理的内容: 如果集合𝐴和集合𝐵之间存在一个从𝐴𝐵的单射(即𝐴中的每一个元素都可以映射到中的一个唯一的元素),并且同时存在一个从𝐵𝐴的单射,那么集合𝐴和集合𝐵之间存在一个双射。换句话说,如果能够找到一种方式把𝐴的每个元素映射到𝐵的不同元素上,同时也有一种方式反过来做,那么就可以断言集合𝐴𝐵具有相同的基数(或等势)。

这个定理的直接含义是,如果两个集合互相可以通过单射嵌入对方,则它们实际上具有相同的无限数量的元素,尽管这两个集合可能看起来非常不同。它简化了基数比较的过程,因为只需展示存在这样的单射,而不需要直接构造出双射。

康托-伯恩斯坦定理提供了一个强有力的工具,它简化了在已知两个集合可以通过单射相互嵌入时,直接断言它们基数相等的过程,而不需要进一步寻找或构造双射函数。这对于理解和操作无穷集合,尤其是在基数理论的框架下,是非常重要的。

抽屉原理: 如果有n+1个物体要放入n个抽屉中,那么至少有一个抽屉里面会包含两个或更多个物体。

模糊集合论是数学的一个分支,它扩展了经典集合论的概念,用以处理那些边界不清晰或者成员资格不是非黑即白的情况。在经典集合论中,一个元素要么属于某个集合(称为属于关系,记为属于该集合),要么不属于(不属于该集合)。然而,在现实世界中,很多情况下事物的分类并不如此绝对,比如判断一个人是否或一个物体颜色是否为红色,这些概念往往具有主观性和一定程度的不确定性。

模糊集合论由扎德(Lotfi A. Zadeh)于1965年首次提出,其核心在于引入了隶属度的概念。在模糊集合中,每个元素对于集合的隶属度是一个介于01之间的实数,表示该元素属于该集合的程度。0表示完全不属于,1表示完全属于,而介于两者之间的任何数值则表示某种程度的属于关系。

例如,如果我们定义一个关于高个子人的模糊集合,那么一个身高180cm的人可能被赋予一个接近1的隶属度,而一个身高160cm的人可能被赋予一个较低但依然大于0的隶属度,表明虽然他们不够典型,但仍可视为某种程度上的高个子

模糊集合论提供了一系列数学工具和技术来处理和操作这种隶属度信息,包括模糊集的定义、模糊逻辑运算(如模糊并、交、补等)、模糊关系以及模糊推理系统等。这些工具在人工智能、控制工程、模式识别、决策分析等领域有着广泛的应用,特别是在处理那些需要处理不确定性和模糊性的复杂问题时。

序数是数学中的一个基本概念,主要用于描述集合中元素的位置或顺序。在日常语言中,当我们说第一第二第三等时,我们实际上就是在使用序数概念来指明顺序。

在形式化一点的数学表述中,序数是指一类特殊的数,它们不仅表示数量,更重要的是表示排列的顺序。序数是从自然数的概念扩展而来的,自然数(1, 2, 3, ...)本身就是最基础的一类序数,用来标记有限序列中的位置。但是序数的概念可以扩展到无限,用来描述更复杂的有序结构。

以下是序数的一些关键特性:

  1. 自然数作为序数:自然数是最简单的序数,表示有限集合中元素的位置。例如,在序列{a, b, c}中,a是第一个元素(可以用序数1标记),b是第二个元素(序数2),c是第三个元素(序数3)。
  2. 无限序数:超越了所有自然数的序数称为无限序数,第一个无限序数通常表示为ω。它代表了一个比任何自然数都大的序数,可以用来标记一个无限序列的终点,比如在数列1, 2, 3, ...之后的位置。
  3. 后续序数:对于任何一个序数α,都有一个后续序数α+1,表示在α之后的位置。例如,自然数n的后续是n+1;而对于无限序数ω,其后续序数是ω+1,表示在所有自然数之后的下一个位置。
  4. 极限序数:如果一个序数β是所有小于它的序数的上界(即,对所有α<β,都有α≤β),并且β不是任何序数的后续,那么β就是一个极限序数。例如,ω是一个极限序数,因为它是所有自然数的上界,但不是任何自然数的直接后续。

序数在集合论、拓扑学、逻辑学和计算机科学等领域有重要应用,尤其是在描述和分析有序结构、无穷序列和递归定义时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值