集合论

集合论

背景
计算机科学从理论到实践:
-集合论强大的传统性、普遍性和中立性使它成为一种新的理论使两个国家统一的坚定的共同点
-集合论很可能在大多数现代理论之后很久才出现编程语言
•集合论的知识应该有助于提高你的抽象思维能力。它将为你建立一个坚实的理解基础。分析你将遇到的计算机科学新思想。

与计算机相关:
为数据建模:
•识别具有相似特征的事物集合
属性:
•如数字、字符串等;
区分不同的东西:
•如数字、字符串等;
编程中的数据类型,以及数学,是非常相似的概念。

集合的概念:
定义:
•集合是共享某些属性:
•属性通常是一个逻辑命题;
•集合的元素:元素必须为所有人持有;
•集合的基数:是其中不同元素的数量,
•通常表示为|集|,有时表示为#集。
•元素列表:用逗号分隔,以及用花括号括起来;
例如: { false, true }, { 3, 7, 14 },
如果对应的是较大的因素:
非正式地:可以使用省略号,如
{2,3,5,7,11,13,17…}(素数)
正式使用“集合生成器”符号:
具有基本形式:{变量:涉及变量的命题}
•例如{n:n是素数}
常用的集合:
数学中的一些常见集合:
•∅={}(空集);
•B={0,1}(二进制数字);
•N={0,1,2,3,…}(自然数);
•Z={…-3,-2,-1,0,1,2,3,…}(整数);
•Q={m/n:m,n∈Z,n≠0}(有理数);
•R={x:x是实数}(实数);

• eg ∅ is not the same as { ∅ },
• since |∅| = 0, but |{ ∅ }| = 1
集合里头有多少数:n(A)
集合里如果说仅仅是包含的要素一致,只不过顺序和重复次数不一样依旧视为一样的集合。
例子分析:
1.: The set {2} is not an element of the set {1,2,3}
The set {2} is an element of the set {{1},{2},{3}}
2.φ ∈{ }is false

属于
• If every element of A is an element of B:
• then A is a subset of B, written A ⊆ B,
• and B is a superset of A, written B ⊇ A,
• hence (A = B) ⇔ (A ⊆ B ∧ A ⊇ B);
• If A is a subset of B, and A ≠ B:
• then A is a proper subset of B, written A ⊂ B;
• Laws for subsets:
• ∅ ⊆ A, and A ⊆ A
• A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页