对象集合的概念通常还未定义,然而可以描述特定的集合使得我们考虑的对象集合没有歧义。例如前10个正整数的集合就非常清楚,
34,14
均不在这个集合中,而3在这个集合中。如果对象属于这个集合,我们就说它是集合的元素,例如如果
C
表示
我们关注的集合大部分都是数集,然而,点集的语言比数集稍微方便点。因此,我们简要说明我们如何使用这个术语。 解析几何中比较重视的事实是对于一条线上的每个点(原点和单位点已经选出来了)有且只有一个数与之对应,假设为
x
;并且对于每个数
定义1: 如果集合 C1 的每个元素也是集合 C2 的一个元素,那么集合 C1 称为集合 C2 的一个子集,我们写成 C1⊂C2 。如果 C1⊂C2 且 C2⊂C1 ,那么这两个集合有相同的元素,我们写成 C1=C2 。
例1: 令 C1={x:0≤x≤1},C2={x:−1≤x≤2} ,这里一维集合 C1 看成一维集合 C2 的一个子集;即 C1⊂C2 。以后在集合维数清楚的情况下,我们就不再具体的提及了。
例2: 定义两个集合 C1={(x,y):0≤x=y≤1},C2={(x,y):0≤x≤1,0≤y≤1} ,因为 C1 的元素位于方形对角线上,所以 C1⊂C2 。
定义2:
如果集合
C
没有元素,那么称
定义3: 至少属于 C1,C2 中一个集合的所有元素构成的集合称为 C1,C2 的并,写作 C1∪C2 。集合 C1,C2,C3,… 的并由至少属于一个集合元素构成,表示为 C1∪C2∪C3∪⋯ ,当集合是有限个时写成 C1∪C2∪⋯Ck 。
例3:
定义集合
C1={x:x=8,9,10,11,or 11<x≤12},C2={x:x=0,1,…,10}
,那么
例4: C1,C2 定义如例2,那么 C1∪C2=C2 。
例5: 令 C2=ϕ ,那么对于所有的 C1,C1∪C2=C1 。
例6: 对每个集合 C,C∪C=C 。
例7:
令
那么 C1∪C2∪C3∪⋯={x:0<x≤1} ,注意零不在这个集合中,因为任何一个 C1,C2,C3,… 中都没有零。
定义4: 同时属于 C1,C2 的所有集合称为 C1,C2 的交, C1,C2 的交写作 C1∩C2 ,集合 C1,C2,C3,… 的交是属于 C1,C2,C3,… 的所有元素,表示成 C1∩C2∩C3∩⋯ ,如果集合是有限多个的,那表示成 C1∩C2∩⋅∩Ck 。
例8: 令 C1={(0,0),(0,1),(1,1)},C2={(1,1),(1,2),(2,1)} ,那么 C1∩C2={(1,1)} 。
例9: 令 C1={(x,y):0≤x+y≤1},C2={(x,y):1<x+y} ,那么 C1,C2 没有公共点,即 C1∩C2=ϕ 。
例10: 对于每个集合 C,C∩C=C,C∩ϕ=ϕ 。
例11:
令
那么 C1∩C2∩C3∩⋯ 是空集,因为没有一个点属于集合 C1∩C2∩C3∩⋯ 。
例12:
令
C1,C2
分别表示由两个相交的圆围成的点集,那么集合
C1∪C2,C1∩C2
可以用如图
???
所示的维纳图表示。
图1
例13:
令
C1,C2,C3
分别表示三个相交的圆围成的点,那么集合
(C1∪C2)∩C3,(C1∩C2)∪C3
如图
???
所示。
图2
定义5: 在某些讨论中,可能需要描述讨论的所有元素,考虑的所有元素组成的集合我们称之为空间,惊心啊过用字母 C,D 表示。
例14:
掷四次硬币,头朝上的次数记为
x
,这个值可能为0,1,2,3,4,这里的空间就是集合
例15:
考虑底为
x
高为
定义6:
令
C
表示空间,
C
是集合
例16:
C
与例14一样,令
C={0,1}
,那么
C
的补是
例17: 给定 C⊂C ,那么 C∪Cc=C,C∩Cc=ϕ,C∪C=C,C∩C=C,(Cc)c=C 。
例18:
(德摩根定律)令
C
表示一个空间,
Ci⊂C,i=1,2
,那么
在微积分中,像函数
或者
再或者
经常出现, f(x) 在点 x=1 处的值为 f(1)=2 ; g(x,y) 在点 (−1,3) 处的值为 g(−1,3)=0 ; h(x1,x2,…,xn) 在点 (1,1,…,1) 处的值为3。像这样的函数称为一个点的函数,或者简单点为点函数,因为他们是由指定空间中的某点处进行估计的。
如果他们有用的话,我们没必要只在一个点处进行估计,而是考虑整个点集。这样的函数自然成为集合函数,接下来我们给出集合函数的实例以及对某些简单的集合进行估计。
例19:
令
C
是一维空间的集合,
例20:
令
C
是二维空间的一个集合,如果
例21:
令
C
是三维空间的一个集合,如果
现在我们引入下面的符号,
表示 f(x) 在一维空间集合 C 上的(黎曼)积分;
表示 g(x,y) 在二维空间集合 C 上的黎曼积分,等等。除非集合
表示在整个 x∈C 上的和;
表示在整个 (x,y)∈C 上的和;等等。
例22:
令
C
是一维空间中的集合,
如果 C={x:0≤x≤3} ,那么
例23:
令
Q(C)=ΣCf(x)
,其中
如果 C={0} ,那么
如果 C={x:1≤x≤2} ,那么 Q(C)=f(1)=p 。
例24:
令
C
是一维集合,
那么如果 C={x:0≤x≤∞} ,那么
如果 C={x:1≤x≤2} ,那么
如果 C1={x:0≤x≤1},C2={x:1<x≤3} ,那么
如果 C=C1∪C2 ,其中 C1={x:0≤x≤2},C2={x:1≤x≤3} ,那么
例25:
令
C
是
如果
C={(x1,x2,…,xn):0≤x1≤x2≤⋯≤xn≤1}
,那么
其中 n!=n(n−1)⋯3⋅2⋅1 。