漫步数理统计二——集合论

对象集合的概念通常还未定义,然而可以描述特定的集合使得我们考虑的对象集合没有歧义。例如前10个正整数的集合就非常清楚, 34,14 均不在这个集合中,而3在这个集合中。如果对象属于这个集合,我们就说它是集合的元素,例如如果 C 表示0x1 x 集合,那么34就是集合 C 的一个元素,34是集合 C 的一个元素这个事实可以写成34C,更一般得, cC 意味着 c 是集合C的一个元素。

我们关注的集合大部分都是数集,然而,点集的语言比数集稍微方便点。因此,我们简要说明我们如何使用这个术语。 解析几何中比较重视的事实是对于一条线上的每个点(原点和单位点已经选出来了)有且只有一个数与之对应,假设为 x ;并且对于每个数x,在直线上有且只有一个点与之对应。在不产生歧义的情况下,这个数与点之间一一对应关系使得我们说点 x 而不是数x,更进一步,在平面矩形坐标系中,对于每个符号 (x,y) ,平面中有且仅有一个点与之对应;对于平面中的每个点,有且仅有一个这样的符号。因此我们可以说点 (x,y) ,这就意味着有序数对 x,y 。当我们讨论三维或更高维空间的矩形坐标系时经常用这种语言,因此点 (x1,x2,,xn) 意味着有序状态的数 x1,x2,,xn 。所以在描述集合时,我们经常用点集(元素都是点的集合)进行描述,符号 C={x:0x1} 表示 C x的一维集合,其中 0x1 ,同样得, C={(x,y):0x1,0y1} 表示 C 是点(x,y)的二维集合。现在我们给出一些定义,有他们导出集合的基本代数。

1 如果集合 C1 的每个元素也是集合 C2 的一个元素,那么集合 C1 称为集合 C2 的一个子集,我们写成 C1C2 。如果 C1C2 C2C1 ,那么这两个集合有相同的元素,我们写成 C1=C2

1 C1={x:0x1},C2={x:1x2} ,这里一维集合 C1 看成一维集合 C2 的一个子集;即 C1C2 。以后在集合维数清楚的情况下,我们就不再具体的提及了。

2 定义两个集合 C1={(x,y):0x=y1},C2={(x,y):0x1,0y1} ,因为 C1 的元素位于方形对角线上,所以 C1C2

2 如果集合 C 没有元素,那么称C为空集,写作 C=ϕ

3 至少属于 C1,C2 中一个集合的所有元素构成的集合称为 C1,C2 的并,写作 C1C2 。集合 C1,C2,C3, 的并由至少属于一个集合元素构成,表示为 C1C2C3 ,当集合是有限个时写成 C1C2Ck

3 定义集合 C1={x:x=8,9,10,11,or 11<x12},C2={x:x=0,1,,10} ,那么

C1C2={x:x=0,1,,8,9,10,11,or 11<x12}={x:x=0,1,,8,9,10,or 11x12}

4 C1,C2 定义如例2,那么 C1C2=C2

5 C2=ϕ ,那么对于所有的 C1,C1C2=C1

6 对每个集合 C,CC=C

7

Ck={x:1k+1x1},k=1,2,3,

那么 C1C2C3={x:0<x1} ,注意零不在这个集合中,因为任何一个 C1,C2,C3, 中都没有零。

4 同时属于 C1,C2 的所有集合称为 C1,C2 的交, C1,C2 的交写作 C1C2 ,集合 C1,C2,C3, 的交是属于 C1,C2,C3, 的所有元素,表示成 C1C2C3 ,如果集合是有限多个的,那表示成 C1C2Ck

8 C1={(0,0),(0,1),(1,1)},C2={(1,1),(1,2),(2,1)} ,那么 C1C2={(1,1)}

9 C1={(x,y):0x+y1},C2={(x,y):1<x+y} ,那么 C1,C2 没有公共点,即 C1C2=ϕ

10 对于每个集合 C,CC=C,Cϕ=ϕ

11

Ck={x:0<x<1k},k=1,2,3,

那么 C1C2C3 是空集,因为没有一个点属于集合 C1C2C3

12 C1,C2 分别表示由两个相交的圆围成的点集,那么集合 C1C2,C1C2 可以用如图 ??? 所示的维纳图表示。


这里写图片描述
图1

13 C1,C2,C3 分别表示三个相交的圆围成的点,那么集合 (C1C2)C3,(C1C2)C3 如图 ??? 所示。


这里写图片描述
图2

5 在某些讨论中,可能需要描述讨论的所有元素,考虑的所有元素组成的集合我们称之为空间,惊心啊过用字母 C,D 表示。

14 掷四次硬币,头朝上的次数记为 x ,这个值可能为0,1,2,3,4,这里的空间就是集合C={0,1,2,3,4}

15 考虑底为 x 高为y的非退化矩形,为了有意义 x,y 都为正值,那么这个空间就是 C={(x,y):x>0,y>0}

6 C 表示空间, C 是集合C的一个子集,属于 C 但不属于 C 的集合称为C的补给,用 Cc 表示,特别地 Cc=ϕ

16 C 与例14一样,令 C={0,1} ,那么 C 的补是Cc={2,3,4}

17 给定 CC ,那么 CCc=C,CCc=ϕ,CC=C,CC=C,(Cc)c=C

18 (德摩根定律)令 C 表示一个空间, CiC,i=1,2 ,那么

(C1C2)c=Cc1Cc2(C1C2)c=Cc1Cc2

在微积分中,像函数

f(x)=2x,<x<

或者

g(x,y)={exy00<x<,0<y<elsewhere

再或者

h(x1,x2,,xn)={3x1x2xn00xi1,i=1,2,,nelsewhere

经常出现, f(x) 在点 x=1 处的值为 f(1)=2 g(x,y) 在点 (1,3) 处的值为 g(1,3)=0 h(x1,x2,,xn) 在点 (1,1,,1) 处的值为3。像这样的函数称为一个点的函数,或者简单点为点函数,因为他们是由指定空间中的某点处进行估计的。

如果他们有用的话,我们没必要只在一个点处进行估计,而是考虑整个点集。这样的函数自然成为集合函数,接下来我们给出集合函数的实例以及对某些简单的集合进行估计。

19 C 是一维空间的集合,Q(C)等于 C 中正整数的总数,那么Q(C)是集合 C 的一个函数,因此,如果C={x:0<x<5},那么 Q(C)=4 ;如果 C={2,1} ,那么 Q(C)=0 ;如果 C={x:<x<6} ,那么 Q(C)=5

20 C 是二维空间的一个集合,如果C的面积是有限的,那么令 Q(C) C 的面积;否则Q(C)未定义。因此,如果 C={(x,y):x2+y21} ,那么 Q(C)=π ;如果 C={(0,0),(1,1),(0,1)} ,那么 Q(C)=0 ;如果 C={(x,y):0x,0y,x+y1} ,那么 Q(C)=12

21 C 是三维空间的一个集合,如果C的体积是有限的,那么令 Q(C) C 的体积;否则Q(C)未定义。因此,如果 C={(x,y,z):0x2,0y1,0z3} ,那么 Q(C)=6 ;如果 C={(x,y,z):x2+y2+z21} ,那么 Q(C) 未定义。

现在我们引入下面的符号,

Cf(x)dx

表示 f(x) 在一维空间集合 C 上的(黎曼)积分;
Cg(x,y)dxdy

表示 g(x,y) 在二维空间集合 C 上的黎曼积分,等等。除非集合C,函数 f(x),g(x,y) 认真选取,否则一般都无法进行积分。同样的,
Cf(x)

表示在整个 xC 上的和;
Cg(x,y)

表示在整个 (x,y)C 上的和;等等。

22 C 是一维空间中的集合,Q(C)=ΣCf(x),其中

f(x)={(12)x0x=1,2,3,elsewhere

如果 C={x:0x3} ,那么
Q(C)=12+(12)2+(12)3=78

23 Q(C)=ΣCf(x) ,其中

f(x)={px(1p)(1x)0x=0,1elsewhere

如果 C={0} ,那么
Q(C)=(x=0)0px(1p)1x=1p

如果 C={x:1x2} ,那么 Q(C)=f(1)=p

24 C 是一维集合,

Q(C)=Cexdx

那么如果 C={x:0x} ,那么

Q(C)=0exdx=1

如果 C={x:1x2} ,那么
Q(C)=21exdx=e1e2

如果 C1={x:0x1},C2={x:1<x3} ,那么
Q(C1C2)=30exdx=10exdx+31exdx=Q(C1)+Q(C2)

如果 C=C1C2 ,其中 C1={x:0x2},C2={x:1x3} ,那么
Q(C)=Q(C1C2)=30exdx=20exdx+31exdx21exdx=Q(C1)+Q(C2)Q(C1C2)

25 C n维空间的集合,

Q(C)=Cdx1dx2dxn

如果 C={(x1,x2,,xn):0x1x2xn1} ,那么

Q(C)=10xn0x30x20dx1dx2dxn1dxn=1n!

其中 n!=n(n1)321

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值