Enriching Knowledge Bases with Counting Quantifiers理解

Paramita Mirza, et al. ISWC 2018.
对某些术语不能确定其译名,因此暂用英文。

Couting quantifiers play an important role in question answering or knowledge base curation, but are neglected by prior work. This paper develops the first full-fledged system for extracting counting information from text, called CINEX.

CINEX successfully deals with three challenges:

  • non-maximal training seeds due to the incompleteness of knowledge bases;
  • sparse and skewed observations in text sources;
  • high diverstiy of liguistic patterns.

CINEX architecture is shown in figure 1. CINEX can be divided into two important stages: CQ Recgnition and CQ Consolidation. Firstly, CINEX uses the seeds from WIKIDATA and train two different models to generate CQ candidates. The models are CRF++ with n-gram features and bidirectional LSTM-CRF repectively. Then CINEX consolidates the tokens expressing counting or compositionality information into a single prediction based on mention consolidation with confidence scores and count zero.
在这里插入图片描述
Figure 1. Overview of CINEX system.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值