Yu Su, Enhong Chen, et al. 2018 AAAI.
预测学生的将来考试成绩可更好地改善学生学习表现。现有方法,如认知诊断(cognitive diagnosis)、知识追踪(knowledge tracing)、矩阵分解(matrix factorization)、深度学习(deep learning)等是基于知识特性概念(knowledge-specific concepts)对预测学生进行建模,但这些方法需要大量人力成本,并可能造成信息丢失。
本文认为基于过去的学生练习记录可准确地预测学生表现,但存在以下几点问题:(1)练习的形式多样,需统一表达获取其语义信息;(2)学生表现依赖于长期的历史练习数据,如何追踪大量的练习数据是个难题;(3)学生表现预测也存在“冷启动”问题。
因此本文提出了一个新型捕捉练习的循环神经网络框架(见下图1)。首先,使用一个双向的LSTM去获得练习数据的向量表示。然后,使用一个变种的LSTM去追踪学生的状态。最后,分别基于马尔可夫特性和注意力机制对学生的序列练习状态进行建模,预测最后的输出结果。
图1:EERNNM架构图
值得注意的地方:
- 马尔可夫特性和注意力机制均在该模型中取得了不错的效果。但马尔可夫特性在学生状态数较少时性能较好,且稳定;注意力机制的性能随学生状态数的增加而增加。这是由于两种特性的数学性质所决定的。
- 关于“冷启动”问题。EERNN基于所有已训练的学生数据,可以对没有之前练习状态的学生建模。