Exercise-Enhanced Sequential Modeling for Student Performance Prediction理解

新型循环神经网络框架预测学生表现
现有基于知识特性概念预测学生考试成绩的方法存在人力成本高、信息易丢失问题。本文提出新型捕捉练习的循环神经网络框架,用双向LSTM获练习向量表示,变种LSTM追踪学生状态,基于马尔可夫特性和注意力机制建模预测结果,还能解决“冷启动”问题。

Yu Su, Enhong Chen, et al. 2018 AAAI.

预测学生的将来考试成绩可更好地改善学生学习表现。现有方法,如认知诊断(cognitive diagnosis)、知识追踪(knowledge tracing)、矩阵分解(matrix factorization)、深度学习(deep learning)等是基于知识特性概念(knowledge-specific concepts)对预测学生进行建模,但这些方法需要大量人力成本,并可能造成信息丢失。

本文认为基于过去的学生练习记录可准确地预测学生表现,但存在以下几点问题:(1)练习的形式多样,需统一表达获取其语义信息;(2)学生表现依赖于长期的历史练习数据,如何追踪大量的练习数据是个难题;(3)学生表现预测也存在“冷启动”问题。

因此本文提出了一个新型捕捉练习的循环神经网络框架(见下图1)。首先,使用一个双向的LSTM去获得练习数据的向量表示。然后,使用一个变种的LSTM去追踪学生的状态。最后,分别基于马尔可夫特性和注意力机制对学生的序列练习状态进行建模,预测最后的输出结果。

在这里插入图片描述
图1:EERNNM架构图

值得注意的地方:

  • 马尔可夫特性和注意力机制均在该模型中取得了不错的效果。但马尔可夫特性在学生状态数较少时性能较好,且稳定;注意力机制的性能随学生状态数的增加而增加。这是由于两种特性的数学性质所决定的。
  • 关于“冷启动”问题。EERNN基于所有已训练的学生数据,可以对没有之前练习状态的学生建模。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值