数字信号处理(二)离散时间信号的傅里叶变换


在这里插入图片描述

什么是离散时间傅里叶变换

离散时间傅里叶变换(英语:Discrete-time Fourier Transform,简称:DTFT)是傅里叶变换的一种。它将以离散时间nT(其中,T为采样间隔)作为变量的函数(离散时间信号)变换到连续的频域,即产生这个离散时间信号的连续频谱,值得注意的是这一频谱是周期的。

序列的离散时间傅里叶变换

序列的离散时间傅里叶变换(DTFT)的定义为:
X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ω n X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n} X(ejω)=n=x(n)ejωn
DTFT成立的充分必要条件是序列x(n)满足绝对可和:
∑ n = − ∞ ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{\infty}|x(n)|<∞ n=x(n)<
逆变换的公式,记为IDTFT:
x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=\frac1{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j\omega n}d\omega x(n)=2π1ππX(ejω)ejωndω

序列的离散时间傅里叶变换的性质

1、DTFT的周期性

在如下定义式中,n取整数,
X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ω n X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(n)e^{-j\omega n} X(ejω)=n=x(n)ejωn
因此下式成立,其中M为整数
X ( e j ω ) = ∑ n = − ∞ ∞ x ( n ) e − j ( ω + 2 π M ) n X(e^{j\omega})=\sum_{n=-\infty}^{\infty}x(n)e^{-j(\omega+2\pi M)n} X(ejω)=n=x(n)ej(ω+2πM)n
序列的离散时间傅里叶变换的周期是2 π \pi π。因此一般只分析$-\pi $~ π \pi π之间的DTFT。

2、线性

X 1 ( e j ω ) = D T F T [ x 1 ( n ) ] X_1(e^{j\omega})=DTFT[x_1(n)] X1(ejω)=DTFT[x1(n)]

X 2 ( e j ω ) = D T F T [ x 2 n ) ] X_2(e^{j\omega})=DTFT[x_2n)] X2(ejω)=DTFT[x2n)]

那么

D T F T [ a x 1 ( n ) + b x 2 ( n ) ] = a X 1 ( e j ω ) + b X 2 ( e j ω ) DTFT[ax_1(n)+bx_2(n)]=aX_1(e^{j\omega})+bX_2(e^{j\omega}) DTFT[ax1(n)+bx2(n)]=aX1(ejω)+bX2(ejω)

式中a,b为常数

3、时移与频移

X ( e j ω ) = D T F T [ x ( n ) ] X(e^{j\omega})=DTFT[x(n)] X(ejω)=DTFT[x(n)],那么

  • D T F T [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) DTFT[x(n-n_0)]=e^{-j\omega n_0}X(e^{j\omega}) DTFT[x(nn0)]=ejωn0X(ejω)
  • D T F T [ e j ω 0 n x ( n ) ] = X ( e j ( ω − ω 0 ) ) DTFT[e^{j\omega_0 n}x(n)]=X(e^{j(\omega-\omega_0)}) DTFT[ejω0nx(n)]=X(ej(ωω0))

4、共轭序列

  • D T F T [ x ∗ ( n ) ] = X ∗ ( e − j ω ) DTFT[x^*(n)]=X^*(e^{-j\omega}) DTFT[x(n)]=X(ejω)
  • D T F T [ x ∗ ( − n ) ] = X ∗ ( e j ω ) DTFT[x^*(-n)]=X^*(e^{j\omega}) DTFT[x(n)]=X(ejω)

5、共轭对称序列与共轭反对称序列

①共轭对称序列

共轭对称序列 x e ( n ) x_e(n) xe(n)满足 x e ( n ) = x e ∗ ( − n ) , ( 1 ) x_e(n)=x^*_e(-n),(1) xe(n)=xe(n)(1)

x e ( n ) x_e(n) xe(n)用其实部与虚部表示 x e ( n ) = x e r ( n ) + j x e i ( n ) x_e(n)=x_{er}(n)+jx_{ei}(n) xe(n)=xer(n)+jxei(n)

将上式两边n用-n代替,并取共轭,得到 x e ∗ ( − n ) = x e r ( − n ) − j x e i ( − n ) x^*_e(-n)=x_{er}(-n)-jx_{ei}(-n) xe(n)=xer(n)jxei(n)

根据(1)式,上面两式左边相等,得到

x e r ( n ) = x e r ( − n ) , x e i ( n ) = − x e i ( − n ) x_{er}(n)=x_{er}(-n),x_{ei}(n)=-x_{ei}(-n) xer(n)=xer(n),xei(n)=xei(n)

因此共轭对称序列实部是偶函数,虚部是奇函数

②共轭反对称序列

共轭反对称序列 x o ( n ) x_o(n) xo(n)满足 x o ( n ) = − x o ∗ ( − n ) x_o(n)=-x^*_o(-n) xo(n)=xo(n)

x o ( n ) x_o(n) xo(n)用其实部与虚部表示 x o ( n ) = x o r ( n ) + j x o i ( n ) x_o(n)=x_{or}(n)+jx_{oi}(n) xo(n)=xor(n)+jxoi(n)

同理可得

x o r ( n ) = − x o r ( − n ) , x o i ( n ) = x o i ( − n ) x_{or}(n)=-x_{or}(-n),x_{oi}(n)=x_{oi}(-n) xor(n)=xor(n),xoi(n)=xoi(n)

因此共轭反对称序列实部是奇函数,虚部是偶函数

对于一般序列可用共轭对称序列与共轭反对称序列之和表示,即

x ( n ) = x e ( n ) + x o ( n ) x(n)=x_e(n)+x_o(n) x(n)=xe(n)+xo(n)

式中 x e ( n ) , x o ( n ) x_e(n),x_o(n) xe(n),xo(n)可以用原序列x(n)求出,将上式中的n用-n代替,再取共轭得到

x ∗ ( − n ) = x e ( n ) − x o ( n ) x^*(-n)=x_e(n)-x_o(n) x(n)=xe(n)xo(n)

利用以上两式,得到

x e ( n ) = 1 2 [ x ( n ) + x ∗ ( − n ) ] x_e(n)=\frac12[x(n)+x^*(-n)] xe(n)=21[x(n)+x(n)] x o ( n ) = 1 2 [ x ( n ) − x ∗ ( − n ) ] x_o(n)=\frac12[x(n)-x^*(-n)] xo(n)=21[x(n)x(n)]

对于频域函数 X ( e j ω ) X(e^{j\omega}) X(ejω)满足:

X e ( e j ω ) = 1 2 [ X ( e j ω ) + X ∗ ( e − j ω ) ] X_e(e^{j\omega})=\frac12[X(e^{j\omega})+X^*(e^{-j\omega})] Xe(ejω)=21[X(ejω)+X(ejω)] X o ( e j ω ) = 1 2 [ X ( e j ω ) − X ∗ ( e − j ω ) ] X_o(e^{j\omega})=\frac12[X(e^{j\omega})-X^*(e^{-j\omega})] Xo(ejω)=21[X(ejω)X(ejω)]

6、DTFT的对称性
在这里插入图片描述
在这里插入图片描述
7、时域卷积定理

设 y(n)=x(n)*h(n),则 Y ( e j ω ) = X ( e j ω ) ⋅ H ( e j ω ) Y(e^{j\omega})=X(e^{j\omega})\cdot H(e^{j\omega}) Y(ejω)=X(ejω)H(ejω)

证明:

y ( n ) = ∑ m = − ∞ ∞ x ( m ) h ( n − m ) y(n)=\sum_{m=-\infty}^{\infty}x(m)h(n-m) y(n)=m=x(m)h(nm)

Y ( e j ω ) = D T F T ( y ( n ) ) = ∑ n = − ∞ ∞ [ ∑ m = − ∞ ∞ x ( m ) h ( n − m ) ] e − j ω n Y(e^{j\omega})=DTFT(y(n))=\sum_{n=-\infty}^{\infty}[\sum_{m=-\infty}^{\infty}x(m)h(n-m)]e^{-j\omega n} Y(ejω)=DTFT(y(n))=n=[m=x(m)h(nm)]ejωn

令k=n-m,则

Y ( e j ω ) = ∑ k = − ∞ ∞ ∑ m = − ∞ ∞ h ( k ) e − j ω k x ( m ) e − j ω m Y(e^{j\omega})=\sum_{k=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}h(k)e^{-j\omega k}x(m)e^{-j\omega m} Y(ejω)=k=m=h(k)ejωkx(m)ejωm

= ∑ k = − ∞ ∞ h ( k ) e − j ω k ∑ m = − ∞ ∞ x ( m ) e − j ω m =\sum_{k=-\infty}^{\infty}h(k)e^{-j\omega k}\sum_{m=-\infty}^{\infty}x(m)e^{-j\omega m} =k=h(k)ejωkm=x(m)ejωm

= H ( e j ω ) X ( e j ω ) = H(e^{j\omega})X(e^{j\omega}) =H(ejω)X(ejω)
在这里插入图片描述
8、频域卷积定理

假设 X ( e j ω ) = D T F T [ x ( n ) ] X(e^{j\omega})=DTFT[x(n)] X(ejω)=DTFT[x(n)]

H ( e j ω ) = D T F T [ h ( n ) ] H(e^{j\omega})=DTFT[h(n)] H(ejω)=DTFT[h(n)]

y ( n ) = x ( n ) h ( n ) y(n)=x(n)h(n) y(n)=x(n)h(n)

Y ( e j ω ) = 1 2 π X ( e j ω ) ∗ H ( e j ω ) Y(e^{j\omega})=\frac1{2\pi}X(e^{j\omega})^*H(e^{j\omega}) Y(ejω)=2π1X(ejω)H(ejω)

= 1 2 π ∫ − π π H ( e j θ ) X ( e j ( ω − θ ) ) d θ =\frac1{2\pi}\int_{-\pi}^{\pi}H(e^{j\theta})X(e^{j(\omega-\theta)})d\theta =2π1ππH(ejθ)X(ej(ωθ))dθ

该定理表明在时域两序列相乘,转换到频域服从卷积关系。该定义也称为调制定理

基本序列的离散时间傅里叶变换

  • 单位脉冲序列的DTFT

    D T F T [ δ ( n ) ] = ∑ n = − ∞ ∞ δ ( n ) e − j ω n = 1 DTFT[\delta(n)]=\sum_{n=-\infty}^{\infty}\delta(n)e^{-j\omega n}=1 DTFT[δ(n)]=n=δ(n)ejωn=1
    在这里插入图片描述

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值