离散时间傅里叶变换(理解推导)

离散时间傅里叶变换(DTFT)

Tips: 此贴适合有一定傅里叶变换和傅里叶级数基础的人观看。意在帮助大家更好的理解DTFT和CTFT的关系。
讲解了从连续时间傅里叶变换(就是我们正常所用到的傅里叶变换)到离散时间傅里叶变换的简单推导

在学习离散傅里叶变换之前,首先我们要了解傅里叶级数(Fourier Series)和傅里叶变换 (Fourier Transform)

x\left(t\right)=\sum_{n=-\infty}{\infty}{C_{k }e{jnwt}}

在这里插入图片描述
傅里叶级数和傅里叶变换针对的都是连续函数,假如说有一个离散序列x(n),怎么找到它的相对应的傅里叶变换呢?

假设我们有一个连续函数 x(t),对x(t)取样,取样周期为T_s 我们可以得到:
x_s(t)=x(t)\sum_{n=-\infty}^{\infty}{\delta(t\ -\ nT_s)}
可以很容易看出后半部分为一个周期函数,周期

\ {\ \ T}_s    (w_s=\frac{2\pi}{T_s}),而且每当 t = nT_s 时该函数值为1。

根据傅里叶级数性质,我们可以将其写为傅里叶级数
\sum_{n=-\infty}{\infty}{\delta(t - nT_s)}=\sum_{k=-\infty}{\infty}{C_ke^{jkw_st}}
根据傅里叶级数公式,求得
C_k=\frac{1}{T_s}

然后我们得到了取样函数的另一种表达方式:
在这里插入图片描述
这里后半部分是以傅里叶级数的形式来表示出来的

根据傅里叶函数的定义对x_s(t)求傅里叶变换

在这里插入图片描述

这里将我们上面所求的x_s(t)的表达式代入
在这里插入图片描述

根据积分性质将上述式子改写为:
在这里插入图片描述
在这里插入图片描述

根据时间平移特性,很容易观察出后面的积分项可以写成连续函数x(t)的傅里叶变换平移kf_s之后得到的图像。

通过表达式我们很容易看出,离散时间傅里叶变换可以看成,连续时间傅里叶变换的幅度先变为原来的1/Ts,然后有规律的向左向右平移kf_s单位。 这意味着DTFT是周期函数。周期为f_s。
我们可以根据下图来感受一些DTFT 和 CTFT的关系: (\mathrm{\Omega}=\frac{2\pi}{T}\ \ \  \mathrm{\Omega}_s=\frac{2\pi}{T_s}\  \ w_b=\frac{\mathrm{\Omega}}{T_s})

在这里插入图片描
其实很多工科的学生不需要理解推导,以上推导是帮助我们更好的理解DTFT,以及它和傅里叶变换的关系,通过推导我们可以明白为什么DTFT是周期性的。只对感兴趣如何计算的,可以直接看下页公式。
DTFT的定义式:
X(jw)=\sum_{n=-\infty}{\infty}{x(n)e{-jwn}}
如果学过z变换的同学,看到这个公式肯定很熟悉,因为

将其带入\bigmX(z)=\sum_{n=-\infty}{\infty}{x(n)z{-n}}
这不就是z变换的定义式吗?
所以我们可以通过z变换得到DTFT:
在这里插入图片描述
当然也可以根据定义来计算
以下是一个很简单的计算,大家可以用两种方法试着计算来帮助自己理解。

](https://img-blog.csdnimg.cn/20200515201652257.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDM3MjQ3Ng==,size_16,color_FFFFFF,t_70)

  • 3
    点赞
  • 0
    评论
  • 8
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

业余软件工程师

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值