归一化植被指数(NDVI)

本文深入探讨了归一化植被指数(NDVI)的概念、计算方法以及在遥感影像分析中的应用。重点阐述了NDVI如何通过近红外与红光波段的反射率比值来评估植被状况,强调其在农作物长势监测、氮需求量估算及合理施用氮肥指导方面的重要性。同时,文章还讨论了NDVI的应用范围、局限性以及获取途径,包括直接下载成品数据或通过波段运算获得。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  归一化植被指数(NDVI):反映土地覆盖植被状况的一种遥感指标,定义为近红外通道与可见光通道反射率之差与之和的商。

  遥感影像中,近红外波段的反射值与红光波段的反射值之差比上两者之和。

  即(NIR-R)/(NIR+R)

  NIR为近红外波段的反射值

  R为红光波段的反射值

  英文缩写为 NDVI。归一化植被指数是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。

  NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。

  1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;

  2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

  3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;

  4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关;

  NDVI的获取

  一方面,可以在NASA的官方网站上直接下载成品数据,数据的分辨率分别为250米、500米、1000米,根据应用目的的不同用户自行选择。另一方面,可以下载遥感影像,根据NDVI=(NIR-R)/(NIR+R)进行波段运算,不过这对遥感影像的质量要求比较高,需要影像上的云量比较少,必要的话还需要进行去云处理。

  NDVI(近红外区与红光区的反射率差值/近红外区与红光区的反射率和值)是最常用的植被指数,虽然NDVI对土壤背景的变化较为敏感,但由于NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件有关辐照度的变化,增强了对植被的响应能力,是目前已有的40多种植被指数中应用最广的一种。

  许多研究已经表明NDVI与LAI、NPP、fAPAR等生物物理参数有着密切的关联。

   

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值