What is the numerical value of the nth Fibonacci number?
There is no special way to denote the end of the of the input, simply stop when the standard input terminates (after the EOF).
0 1 2 3 4 5 35 36 37 38 39 40 64 65
0 1 1 2 3 5 9227465 14930352 24157817 39088169 63245986 1023...4155 1061...7723 1716...7565
求后四位好求 但前四位不是很好求 我也是看了大佬的博客学的,附上博客地址 http://blog.csdn.net/xiangaccepted/article/details/74131404
首先如果我们要求 n^k的前四位应该怎么办 设 n^k=10^p p=lg n^k =k*lg n
x=(int)p y=p-x 那么 n^k =10^x +10 ^y
10^x 代表 有x 个0 10^y是它的小数部分
计算方法:
double p=k*log(n);
p=p-(int)p;
int ans=(int)(pow(10,p)*1000);
那么 转换为矩阵 我们只要在矩阵里面存p的值就行了;
原来的 初始矩阵 系数矩阵 (初始矩阵从 斐波那契 -1 -2 项开始)
0 1 1 1
0 0 1 0
不过 没有p 使得值为0 那么我们存-1 后来特判就行
初始矩阵(double) 系数矩阵(double)
-1 0 0 0 (0表示1及10^0) (若是2的话就表示100及10^2)
-1 -1 0 -1 (-1表示原来的数字是0,遇到-1则特判即可)
我们矩阵的乘法也得改变原本 100*100=10000 -> 2+2=4
10^5.5+10^3.6=10^3.6 * (10^1.9+1) -> 5.5+3.6=3.6+log ( pow( 10 , 1.9 ) + 1 )
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<math.h>
#include<vector>
#include<iostream>
using namespace std;
typedef long long ll;
const int mod=10000;
int n;
int f[100];
struct node1//求前4位
{
int n;
double a[2][2];
node1()
{
memset(a,0,sizeof(a));
}
}A,B;
node1 operator *(node1 a,node1 b)
{
node1 ans;
ans.n=a.n;
for(int i=0;i<a.n;i++)
for(int j=0;j<2;j++)
{
double ma,mb;
int flag1=0,flag2=0;
if(a.a[i][0]<0||b.a[0][j]<0) flag1=1;
else ma=a.a[i][0]+b.a[0][j];
if(a.a[i][1]<0||b.a[1][j]<0) flag2=1;
else mb=a.a[i][1]+b.a[1][j];
if(flag1&&flag2) ans.a[i][j]=-1.0;
else if(flag1&&!flag2) ans.a[i][j]=mb;
else if(!flag1&&flag2) ans.a[i][j]=ma;
else
{
double mc;
if(mb>ma) swap(mb,ma);
mc=mb; ma-=mb;mb=0.0;
ans.a[i][j]=mc+log10(1+pow(10,ma));
}
}
return ans;
}
void aa1(int x)
{
node1 ans=A,p=B;
while(x)
{
if(x&1)
ans=ans*p;
p=p*p;
x=x/2;
}
double l=ans.a[0][0];
l=l-(int)l;
l=pow(10,l);
printf("%d...",(int)(l*1000));
}
struct node2//求后四位
{
int n;
int a[2][2];
node2()
{
memset(a,0,sizeof(a));
}
}A2,B2;
node2 operator *(node2 a,node2 b)
{
node2 ans;
ans.n=a.n;
for(int i=0;i<a.n;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
ans.a[i][j]=((ans.a[i][j]+a.a[i][k]*b.a[k][j])%mod+mod)%mod;
return ans;
}
void aa2(int x)
{
node2 ans=A2,p=B2;
while(x)
{
if(x&1)
ans=ans*p;
p=p*p;
x=x/2;
}
int o=(ans.a[0][0]%mod+mod)%mod;
printf("%04d\n",o);
}
int main()
{
A.a[0][0]=-1,A.a[0][1]=0;
B.a[0][0]=0,B.a[0][1]=0;
B.a[1][0]=0,B.a[1][1]=-1;
A.n=1,B.n=2;
A2.a[0][0]=0,A2.a[0][1]=1;
B2.a[0][0]=1,B2.a[0][1]=1;
B2.a[1][0]=1,B2.a[1][1]=0;
A2.n=1,B2.n=2;
f[0]=0;
f[1]=1;
for(int i=2;i<=40;i++)
f[i]=f[i-1]+f[i-2];
while(~scanf("%d",&n))
{
if(n<40)
printf("%d\n",f[n]);
else
{
aa1(n);
aa2(n);
}
}
}