链接:https://www.nowcoder.com/acm/contest/94/H
来源:牛客网
题目描述
给出一个N*N的方阵A。构造方阵B,C:
使得A = B + C.其中 B为对称矩阵,C为反对称矩阵。
对于方阵S中的任意元素,若(S)ij = (S)ji,则称S为对称矩阵
对于方阵T中的任意元素,若(T)ij = -(T)ji,则称T为反对称矩阵
注意,所有运算在模M意义下
使得A = B + C.其中 B为对称矩阵,C为反对称矩阵。
对于方阵S中的任意元素,若(S)ij = (S)ji,则称S为对称矩阵
对于方阵T中的任意元素,若(T)ij = -(T)ji,则称T为反对称矩阵
注意,所有运算在模M意义下
输入描述:
输入包含多组数据,处理到文件结束 每组数据,第一行包含两个正整数N,M(1 <= N <= 1000, 1 <= M <= 1000,000,001)分别表示方阵大小与模数,其中M必定为奇数。 接下来的N行,每行有N个非负整数,表示方阵A(0<=Aij<=1000,000,000)。
输出描述:
对于每组数据,将反对称矩阵$C$在$N$行中输出; 若不存在解,则输出"Impossible"; 若存在多解,则输出任意解。
输入
2 19260817 0 1 1 0
输出
0 0 0 0
什么是逆元,比如 ( x/y )%m 相当于 (x*y的逆元)%m
(y*y的逆元)%mod=1
解 :设 a[][]为原数组,b[][]为反对称矩阵,c[][]为对称矩阵 ,那么a[1][2]=A,a[2][1]=B,b[1][2]=x,b[2][1]=-x,c[1][2]=y,c[2][1]=y
则x=(A-B)/2 , y=(A+B)/2 ,显然我们只需要x就行 ,那么(A-B)一般情况下得为偶数才行 不过既然运算在%mod下进行,那么除以2变成乘上2的逆元,显然2对于奇数m的逆元为m/2 +1 ,那么(A-B)*(m/2 +1) %m ,显然是没有impossible的情况
为了防止负数输出,我们得把要输出的 h 进行这样的操作 输出 (h%m+m)%m;
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
ll n,mod;
ll a[1100][1100];
ll b[1100][1100];
int main()
{
while(~scanf("%lld%lld",&n,&mod))
{
ll m=mod/2+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%lld",&a[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(j!=1) printf(" ");
printf("%lld",((a[i][j]-a[j][i])*m%mod+mod)%mod);
}
printf("\n");
}
}
}