定义一个区间的值为其众数出现的次数。
现给出n个数,求将所有区间的值排序后,第K大的值为多少。
第二行n个数,0<=每个数<2^31Output一个数表示答案。Sample Input
4 2 1 2 3 2Sample Output
2
解 :我们要注意的是 定义一个区间的值为其众数出现的次数
我们可以先二分答案 ,看我们二分出来的这个答案是否满足比这个数大的个数小于k,我们怎么判断就用到了尺取;
因为n较小而n个数的值较大 我们可以先把他离散化
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
#include<math.h>
#include<queue>
#include<map>
#include<vector>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
ll a[1000100];//输入
ll c[1000100];//和输入值一样,不过在输入值去重后,用它来进行离散化
ll b[1000100];//离散化后的值
ll num[1000100];//num[i]代表选取的一段中i出现的次数
int n,k;
int kk(int x)//尺取
{
memset(num,0,sizeof(num));
int l=0;//l代表尺取的最左端点
ll en=0;//en代表比x大的个数
for(int i=0;i<n;i++)
{
num[b[i]]++;//b[i]出现的次数+1
if(num[b[i]]>x) //出现次数大于二分出来的答案
{
while(num[b[i]]>x) //取出左端点如果还满足大于x,那就继续取出 直到不满足
{
en+=n-i; //显然从左端点l开始到i的这一段众数出现次数大于x的话 只要右端点大于i,肯定也大于x
num[b[l++]]--; //先把左端点取出 ,左端点在右移1
}
}
}
if(en>=k) return 0; //大于x的个数大于等于k个,说明枚举的答案不是第k大
return 1; //说明枚举答案小于或等于第k大
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++)
{
scanf("%lld",&a[i]);
c[i]=a[i];
}
sort(a,a+n);
int size=unique(a,a+n)-a;
for(int i=0;i<n;i++)
b[i]=lower_bound(a,a+size,c[i])-a;//离散化
int l=0,r=n,mid;
while(l<r) //二分找答案
{
int mid=(l+r)/2;
if(kk(mid))
r=mid;
else
l=mid+1;
}
printf("%d\n",r);
}
//100 2165
//6 4 5 9 6 2 3 1 1 1 8 8 1 0 0 2 2 0 3 5 0 6 4 7 5 1 1 9 5 9 6 5 5 5 9 8 5 6 0 0 5 2 3 0 0 8 7 9 5 2 0 5 2 1 5 5 8 4 6 0 1 3 9 2 7 7 7 6 3 1 3 1 4 3 2 5 1 0 5 0 4 2 1 9 2 0 0 4 4 7 6 4 0 2 5 0 0 8 5 8
//7