最近人工智能火的一塌糊涂,和很多想入门或者想转行的小伙伴聊了一下,发现大家对于怎么学习人工智能,怎么学习相关算法,都是一脸蒙圈,不知道该从哪里抓起。这里根据个人的学习经历,总结了一个大概的经验,希望能帮助到大家。本人是非计算机相关专业,也非人工智能和算法的相关专业出身,从一个一点代码都不会的选手,到了现在的人工智能算法工程师,也是通过一步步学习才进入到这个行业的。(总结内容均为个人理解,如有错误,欢迎指正)
下面所列内容,按照标题顺序,就是一个大概的学习路线。
一、python基础
老话说得好,工欲善其事必先利其器,Python 是人工智能领域中最常用的语言之一,这得益于其简洁的语法和强大的库支持。
对于想入门的童鞋来讲,这个是重中之重,如果你想入门人工智能,就必须学习python。但是python广义来讲,包括的内容太多了,对于一个人工智能的算法工程师来说,我们只去针对性的学习我们需要的那些就够了。下面列举了一部分算法工程师常用的python工具库。
-
NumPy - 一个用于进行大规模数值计算的基础库,提供了高效的多维数组对象。
-
Pandas - 提供了高性能的数据结构和数据分析工具,特别适合数据清洗和准备。
-
Matplotlib/Seaborn - 用于绘制图表和可视化数据,帮助理解数据分布和模型表现。
-
Scikit-learn - 一个简单而有效的数据挖掘和数据分析库,内置了大量的经典机器学习算法,如回归、分类、聚类等,机器学习相关岗位最常用的模型库之一。
-
TensorFlow - 由 Google 开发的开源框架,支持广泛的机器学习和深度学习应用,包括神经网络的构建、训练和部署。
-
Keras - 高级神经网络API,可以运行在TensorFlow之上,简化了深度学习模型的创建过程。
-
PyTorch - 由 Facebook 的 AI 研究小组开发的一个基于 Torch 的 Python 优先库,提供动态计算图和自动求导功能,非常适合研究工作,和tensorflow可对比着看,tensorflow是对各种功能封装的比较好,方便调用。pytorch相对来说更灵活,可以做到细节的自由定制化操作,目前相关学习网站中,pytorch模型也是比较多的。
-
Theano - 一个定义、优化并评估数学表达式的库,尤其适用于需要大量计算的场景,比如深度学习中的梯度下降。
-
Caffe/Caffe2 - 专注于速度的卷积神经网络(CNN)框架,特别适合图像识别任务。
-
OpenCV - 一个开源计算机视觉库,包含数百种计算机视觉算法。
-
NLTK (Natural Language Toolkit) - 为 NLP 提供易于使用的接口,涵盖了文本处理的标准任务,如分词、词干提取、语料库管理等。