尝试在colab运行Point voxel CNN

附pvcnn在github的链接: https://github.com/mit-han-lab/pvcnn
.

  1. 下载代码后导入colab

点击下载zip。下载代码点击新建笔记本。
在这里插入图片描述

打开云端硬盘所在位置。
在这里插入图片描述

点击新建,然后上传文件夹,将解压后的文件夹导入。
在这里插入图片描述
在这里插入图片描述

  1. 下载好相关的第三方库以及设置好环境
    在之前新建的笔记本里点击左侧的文件,然后点击装载Google云端硬盘。在这里插入图片描述

点击链接到GOOGLE云端硬盘。
在这里插入图片描述

当出现drive的文件夹时,表明装载云端硬盘成功。在这里插入图片描述
设置colab的GPU配置,位于“修改”内的“笔记本设置”。
在这里插入图片描述
选择python3和GPU,点击保存。

在这里插入图片描述
根据导入的位置打开文件夹,在colab笔记本内的代码块输入如下代码并运行。注意路径为导入的pvcnn-master文件夹的路径,下方只是我导入pvcnn-master的路径。

import os
path = "/content/drive/My Drive/Colab Notebooks/pvcnn-master"
os.chdir(path)
os.listdir(path)

导入需要的第三方库,具体见该代码的README.md文件,colab里有部分,但需要补充一些,我的补充的如下:

!pip install plyfile
!pip install tensorboardX
!wget  https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
!sudo unzip ninja-linux.zip -d /usr/local/bin/
!sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force

  1. 下载shapenet数据集
! bash './data/shapenet/download.sh'
  1. 执行训练代码
!python train.py configs/shapenet/pvcnn/c1.py --devices 0,1 

运行的结果如下,运行了接近8小时达到了75/250epoch。(由于colab有免费一次运行12小时的限制,目测该程序没能在12小时内运行完我就先停下来了)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值