附pvcnn在github的链接: https://github.com/mit-han-lab/pvcnn
.
- 下载代码后导入colab
点击下载zip。点击新建笔记本。
打开云端硬盘所在位置。
点击新建,然后上传文件夹,将解压后的文件夹导入。
- 下载好相关的第三方库以及设置好环境
在之前新建的笔记本里点击左侧的文件,然后点击装载Google云端硬盘。
点击链接到GOOGLE云端硬盘。
当出现drive的文件夹时,表明装载云端硬盘成功。
设置colab的GPU配置,位于“修改”内的“笔记本设置”。
选择python3和GPU,点击保存。
根据导入的位置打开文件夹,在colab笔记本内的代码块输入如下代码并运行。注意路径为导入的pvcnn-master文件夹的路径,下方只是我导入pvcnn-master的路径。
import os
path = "/content/drive/My Drive/Colab Notebooks/pvcnn-master"
os.chdir(path)
os.listdir(path)
导入需要的第三方库,具体见该代码的README.md文件,colab里有部分,但需要补充一些,我的补充的如下:
!pip install plyfile
!pip install tensorboardX
!wget https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip
!sudo unzip ninja-linux.zip -d /usr/local/bin/
!sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force
- 下载shapenet数据集
! bash './data/shapenet/download.sh'
- 执行训练代码
!python train.py configs/shapenet/pvcnn/c1.py --devices 0,1
运行的结果如下,运行了接近8小时达到了75/250epoch。(由于colab有免费一次运行12小时的限制,目测该程序没能在12小时内运行完我就先停下来了)