
深度学习理论
文章平均质量分 66
DU_YULIN
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习基础:精确率、召回率理解
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言1. 精确率、召回率理解总结参考 前言 在使用Paddle实现手写数字识别时,发现对模型评估标准:精确率(precision)和召回率(recall)有些记不清了,在查找相关定义后,这个做下笔记,分享给大家! 1. 精确率、召回率理解 精确率(precision)=真实正样本被预测为正样本数量(TP)所有预测为正样本数量(TP+FP)精确率(precision)=\frac{真实正样本被预测为正样本数量(TP)}{所有预测为原创 2021-10-07 21:49:58 · 2080 阅读 · 0 评论 -
深度学习:输入数据归一化的理解
文章目录输入数据归一化的理解参考 输入数据归一化的理解 今天复习了深度学习的基本流程:数据处理,网络模型设计,训练配置,训练过程(优化模型参数:权重、偏置、超参数),预测过程。其中有一段介绍梯度更新,即梯度下降法更新权重和偏置,需要用到更新步长,也就是我们所说的学习率。数据归一化,保持输入数据尺度一致,其中一个好处就是在梯度更新阶段使用统一的学习率来进行梯度更新更加合理,说实话,之前都没有考虑到这方面,所以这个分享下。 数据归一化通常意义: 将不同尺度(量纲)的数据进行统一,使数据范围在同一尺度,比如【原创 2021-10-05 14:28:24 · 1187 阅读 · 0 评论