深度学习:输入数据归一化的理解

数据归一化是深度学习预处理的重要步骤,它有助于保持输入数据的尺度一致,使得在梯度下降中使用统一学习率更为合理,从而加速收敛并可能提升模型精度。归一化通常将数据范围缩放至【0,1】,减少训练时间。此外,数据归一化还有助于避免因数据尺度不同导致的优化问题。
摘要由CSDN通过智能技术生成


输入数据归一化的理解

今天复习了深度学习的基本流程:数据处理,网络模型设计,训练配置,训练过程(优化模型参数:权重、偏置、超参数),预测过程。其中有一段介绍梯度更新,即梯度下降法更新权重和偏置,需要用到更新步长,也就是我们所说的学习率。数据归一化,保持输入数据尺度一致,其中一个好处就是在梯度更新阶段使用统一的学习率来进行梯度更新更加合理,说实话,之前都没有考虑到这方面,所以这个分享下。

数据归一化通常意义:

  1. 将不同尺度(量纲)的数据进行统一,使数据范围在同一尺度,比如【0,1】,这样的话,能加快梯度收敛过程,节约训练时间。
  2. 可能提高精度。

参考

https://www.paddlepaddle.org.cn/tutorials/projectdetail/2267447

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值