题目来源:http://acm.hdu.edu.cn/php?pid=5215
题意
给出一个无向图,判定这个无向图中是否存在奇偶环。
思路
利用染色法去枚举该点以及他周围所有点,利用反祖边的思想,那么若是存在反祖边,就要判断一下颜色,若是一样,则是构不成二分图,也表明是奇环,反之,则是偶环,但是有一种偶环是奇环拼凑起来的,比如:
这里,假如,染色的时候是按着:1->2->3的顺序,到了3之后,发现了反祖边,通过颜色对比表明1->2->3->1是奇环那么我将点1记录下来,然后,遍历3->4,发现了反祖边,在判断是奇环,此时,反着遍历这条奇环,枚举各点,发现1被标记过,也就是1存在于另外一个奇环里,那么这两个奇环就会成为一个偶环。。。