【深入浅出通信原理-学习笔记】信号与频谱

1.信号概述

       白光通过三棱镜能分解为七种颜色的单色光,信号与之类似,任何复杂信号都可以分解为一系列不同频率的基本信号之和,一般用频谱来反映构成信号的所有频率成分。

        正弦信号是最常见的信号,对其求积分就相当于求信号波形与时间轴所围出的封闭图形面积的代数和(积分特性)。

        使用正弦信号作为基本信号进行频谱分析时会涉及三角函数运算,较为繁琐。为了简洁,使用复指数信号作为基本信号,频谱分析时使用复指数运算,由此引出著名的欧拉公式

e^{j\theta }=cos\theta +jsin\theta

等号左侧是一个复指数,等号右侧是一个复数,实部为cosθ,虚部为sinθ,在复平面上对应单位圆上的一个点,在单位圆与实轴右半轴的交点处,以1为半径,逆时针旋转θ角度,即得到该点位置。

        复数和复指数e^{j\theta }相乘可以用向量旋转理解:相当于复数对应的向量旋转角度θ,θ大于0时,逆时针旋转,θ小于0时,顺时针旋转。

        在复数和复指数中引入了虚数 j,虚数的物理意义可以用欧拉公式来理解,令欧拉公式中的\theta =\frac{\pi }{2},得到j=e^{j\frac{\pi }{2}},即 复数与j相乘,就相当于和复指数e^{j\frac{\pi }{2}}相乘,相当于复数对应向量逆时针旋转90度。复数与j相乘即相当于向量旋转的过程,同理可推知,实数1对应的向量逆时针旋转90度,得到虚数j,虚数j对应的向量再逆时针旋转90度,得到实数-1。

        对于复指数e^{j\theta },当θ以角速度\omega _{0}随时间t变化时,复指数就变成了复指数信号(复信号),形式如下:

s(t)=Ae^{j(\omega _{0}t+\phi )}

其中A为幅度,\phi为初相。复平面上的一个长度为A的旋转向量,始端位于原点,从角度\phi开始,以角速度\omega _{0}围绕原点旋转,其末端在复平面上的轨迹就是复指数信号。由于复指数信号是随时间t变化的,故其轨迹实际上是三维的,前文讨论的‘复平面上的轨迹’,指的是复指数信号以时间轴t的方向、在复平面上的投影。

        复指数信号(复信号)在复平面上的投影均为圆或类圆形,与李萨育图形(两个互相成谐波频率关系的信号分别在X轴、Y轴方向同时作用于电子束而在荧光屏上描绘出的稳定的图形)类似,由此得到启发:复信号的本质就是并行传输的2路实信号,由于这个信号可以用复数来表示,所以称为复信号,也就是说,引入复信号是为了便于描述和处理信号,在实际通信系统中都是并行传输2路实信号,并没有传输虚数j。

2.信号的相位

        相位指从指定参考点开始测量的完整周期已经过去的部分,通常用角表示,被称为相角。通信系统中使用‘相’来描述正弦波在特定时刻所处的特定状态,例如幅值的正负、增大/较小的趋势,等等。

        对于一个正弦波,其起始点离t=0时刻最近的那个完整周期的起始点相位为零(零相位)。相位的正负取决于该点所在图形的上升/下降趋势,该点所在图形从左至右为递增趋势时,该点相位为正,否则为负。相位的取值取决于该点和零相位点之间的距离。初始相位是指t=0时刻的相位。        

        相位差是指两个同频信号的相位之差,即两个同频信号的初始相位之差。相位差为0时,称这两个信号‘同相’,指任意时刻两个信号的状态(正/负,升/降等)都是相同的。相位差为\pm \pi时,称这两个信号‘反相’,表示这两个信号对应的旋转向量每时每刻方向都相反(若一个为正,则另一个必为负,若一个处于上升过程,则另一个必处于下降过程)。相位差为\pm\pi/2时,称这两个信号‘正交’(当其中一个取值达到正/负最大值时,另一个取值必为0)。其余的相位差情况,归结为超前和滞后关系。

         两个同频且具有恒定相位差的正弦波信号在同一点相遇,会发生波的干涉(在各个位置合成信号的幅度各不相同,且合成信号幅度大的区域和幅度小的区域相互隔开),产生相干现象的波叫相干波,相干条件:频率相同,相位差恒定,振动方向相同。若接收到的两个波源信号同相,合成信号幅度等于二者幅度之和,这种情况称为相长干涉。若接收到的两个波源信号正好相反,合成信号幅度等于二者幅度之差,这种情况称为相消干涉

3.信号的分解与合成

        正弦信号作为基本信号时,一个方波信号可以分解为一个直流分量和一系列余弦波分量之和。

        复指数信号作为基本信号时,一个方波信号可以分解为一个直流分量和一系列复指数信号分量之和。

        将一个周期信号分解为一个直流分量和一系列复指数信号分量之和的过程,就是傅里叶级数展开:

f(t)=\sum_{k=-\infty }^{\infty}c_{k}e^{jk\omega _{0}t}

其中c_{k}傅里叶系数c_{0}是直流分量。

        傅里叶级数展开的本质是用一系列角速度为k\omega _{0}的旋转向量c_{k}e^{jk\omega _{0}t}来合成周期信号,旋转向量在t=0时刻对应的向量就是傅里叶系数c_{k}

        构成周期信号的一系列复指数信号成分可以用傅里叶系数描述,但傅里叶系数不够直观,所以要用到频谱

        实际上频谱是三维的,以频率为横轴,将所有系数c_{k}画到k\omega _{0}处与横轴垂直的复平面上,就得到了三维频谱,三维频谱虽然直观,但绘制起来很有难度,所以用幅度频谱(以频率为横轴,以幅度为纵轴,将所有c_{k}的模画到一张图中)和相位频谱(以频率为横轴,以初相为纵轴,将所有c_{k}的初相画到一张图中)进行频谱分析。

         上文中均以周期信号作为基本信号进行分析,对于非周期信号,非周期信号可以看成是周期信号的周期趋于无穷大得到的。以周期矩形信号为例,傅里叶系数表达式为

c_{k}=\frac{1}{n}sinc(\frac{k}{n})

其周期每扩大一倍,其频谱谱线数量也扩大一倍,频谱谱线间隔和谱线长度会减小一半,当周期T趋于无穷大时,频谱的谱线间隔和长度都将趋近于0,给频谱分析造成了很大困难。故对于一般的非周期信号x(t)求频谱X(f),就引出了傅里叶正变换

X(f)=\int_{-\infty }^{+\infty }x(t)e^{-j2\pi ft}dt

由连续谱X(f)求对应的非周期信号x(t)就引出了傅里叶逆变换

x(t)=\int_{-\infty }^{+\infty }X(f)e^{j2\pi ft}df

        由上文可知,傅里叶变换是由非周期信号引出的,如果对于周期信号也适用,那么对于周期、非周期信号的频谱分析,就可以统一到傅里叶变换这一种方法了。 

        对于一般周期信号,根据傅里叶级数展开,可以分解为一系列复指数信号e^{jk2\pi f_{0}t}之和:

x(t)=\sum_{k=-\infty }^{+\infty}c_{k}e^{jk2\pi f _{0}t}

对其进行傅里叶变换,得到:

X(f)=\sum_{k=-\infty }^{+\infty}c_{k}\delta (f-kf_{0})

即,周期信号的傅里叶变换是由一系列冲激函数构成,这些冲激位于信号的基波和各谐波频率处,冲击强度是傅里叶系数c_{k}

        上文中均为对单个信号的频谱分析,在通信系统中经常会涉及两个信号相乘,对于相乘的两个信号的频谱分析,就引出了卷积,一般将两个离散序列的卷积称为‘卷积和’,将两个连续函数卷积称为‘卷积积分’,卷积和的计算过程包括反褶-平移-相乘-求和,卷积积分的计算过程包括反褶-平移-相乘-积分,卷积积分的计算很麻烦,通信系统中常用的卷积积分是与单位冲激函数做卷积:一个函数与单位冲激函数的卷积结果为函数本身。

        对于两个周期信号,时域相乘相当于频域卷积(频域卷积定理)。

        频域卷积定理在通信系统中应用广泛,例如,在调制中,将信号x(t)调制到载波cos 2\pi f_{0}t上,即

y(t)=x(t)cos 2\pi f_{0}t

根据频域卷积定理,x(t)频谱为X(f),cos 2\pi f_{0}t频谱为\frac{1}{2}\left [ \delta (f+f_{0})+\delta (f-f_{0}) \right ],卷积得到调制后信号的频谱为\frac{1}{2}\left [ X (f+f_{0})+X(f-f_{0}) \right ],即 将信号x(t)调制到载波cos 2\pi f_{0}t上的过程,就是将信号x(t)的频谱X(f)一分为二分别向左和向右搬移f_{0}(频谱搬移)的过程。

        在采样中也会用到频域卷积定理,采样是模拟信号和抽样脉冲相乘得到抽样信号的过程,结合频域卷积定理,可以得到结论:在时域以T_{s}为周期对信号x(t)进行采样,相当于在频域以采样频率f_{s}为间隔对x(t)的频谱进行周期性拓展

        在通信系统中除了会涉及两个信号的乘积之外,还会涉及两个信号的卷积,由此引出时域卷积定理

        两个信号做卷积,相当于在频域做乘法。

        将时域卷积定理应用到滤波中,可以得出:滤波器输出信号的频谱等于输入信号的频谱和滤波器频率响应的乘积。

        傅里叶变换统一了周期信号和非周期信号的频谱分析方法,但上文所涉及的都是连续信号,在通信系统中,数字信号更为常用,故引出了离散傅里叶变换(DFT)

X(k)=\sum_{n=0 }^{N-1}x(n)e^{-j\frac{2\pi }{N}kn}

其中x(n)是N个时域采样点数据,X(k)是N个频域样点数据。

        离散傅里叶正变换表面上看是对时域采样数据进行N点离散傅里叶正变换,实质上求的是被采样信号周期性拓展得到的周期信号的傅里叶系数再乘以点数N。

         与正变换正好相反,离散傅里叶逆变换输入X(k)是N个频域的样点数据,输出x(n)是N个时域的样点数据。

x(n)=\frac{1}{N}\sum_{k=0 }^{N-1}X(k)e^{+j\frac{2\pi }{N}kn} 

由表达式可以看出,逆变换就是将时域样点序列x(n)分解成一系列加权的复指数序列e^{+j\frac{2\pi }{N}kn}之和,加权系数就是X(k)/N。

        逆变换表面上看是对频域采样数据X(k)进行N点离散傅里叶逆变换,实质上是用X(k)/N作为傅里叶系数对复指数信号进行加权合成一个周期信号,再对一个周期进行采样得到N个时域采样数据。

  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DUANDAUNNN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值