《深入浅出通信原理》信号频谱,傅里叶变换原理总结,简单易懂适合小白~

傅里叶变换与信号频谱

任何复杂的信号都可以分解成一系列不同频率的基本信号之和,一般用频谱来反映构成信号的所有频率成分。信息传输的过程就是信号变换和处理的过程。如何观察这个过程中信号发生了什么变化?一种方法是在时域观察信号波形的变化,另一种方法是在频域观察信号频谱的变化。
复指数信号作为基本信号进行频谱分析时使用复指数运算,比较简洁,因此通信中常用的频谱都是以复指数信号作为基本信号进行频谱分析。

复指数信号的几何意义

复平面上的一个长度为A 的旋转向量,始端位于原点,从角度φ开
始,以角速度ω_0围绕原点旋转,其末端在复平面上的轨迹就是复指数信号s(t)=Ae^(j(ω_0 t+φ))。在x-y平面上复指数信号的投影如下图所示:
在这里插入图片描述

假定:A=1,ω_0=2π,φ=0,则:s(t)=e^(j(2πt)),这个复指数信号在三维空间x-y-t内的运动轨迹如下图所示:

在这里插入图片描述

这个复指数信号在复平面x-y上的投影是个单位圆:
在这里插入图片描述

这个复指数信号在实轴(x 轴)上的投影随时间变化的曲线如图2-
16所示。
这个复指数信号在虚轴(y 轴)上的投影随时间变化的曲线如图2-
17所示。
在这里插入图片描述
在这里插入图片描述

需要注意的是:引入复信号只是为了便于描述和处理信号而已,实际通信系统中都是并行传输2路实信号,并没有传输虚数j。

信号的分解与合成

以周期方波信号为例,看看使用一系列复指数信号合成方波信
号的过程。
幅度为0.5的直流信号如图2-72所示。
在这里插入图片描述

幅度为0.318、频率为1Hz的复指数信号,如图2-73所示。
在这里插入图片描述

幅度为0.318、频率为-1Hz的复指数信号,如图2-74所示。
在这里插入图片描述

两个幅度为0.318的复指数信号合成结果如图2-75所示。
在这里插入图片描述

与前面的直流信号叠加,合成信号如图2-76所示。
在这里插入图片描述

幅度为-0.106、频率为3Hz的复指数信号,如图2-77所示。
幅度为-0.106、频率为-3Hz的复指数信号,如图2-78所示。
在这里插入图片描述
在这里插入图片描述

两个幅度为-0.106的复指数信号合成结果如图2-79所示。
叠加到第一次合成信号上去,结果如图2-80所示。
幅度为0.063、频率为5Hz的复指数信号如图2-81所示。
在这里插入图片描述
在这里插入图片描述

可以想象,随着叠加的复指数信号越来越多,波形越来越逼近一个方波,这从一个侧面说明:可以将方波信号分解成一个直流分量和一系列复指数信号分量之和。

周期信号的傅里叶级数展开

将一个周期信号分解为一个直流分量和一系列复指数信号分量之和的过程被称为傅里叶级数展开。周期信号f(t)的傅里叶级数展开式为:
在这里插入图片描述

其中:
ω_0 :ω_0=2π/T,周期T确定了,ω_0就确定了。
c_k :傅里叶系数,c_0是直流分量。
傅里叶级数展开的本质就是用一系列角速度为ω=kω_0的旋转向量c_k e^(jkω_0 t)来合成周期信号。旋转向量在t=0时刻对应的向量就是傅里叶系数c_k,如图2-85所示。
在这里插入图片描述

通常c_k是个复数。

傅里叶系数计算公式

在这里插入图片描述

周期矩形信号的傅里叶系数

用τ表示脉冲的宽度,用T表示脉冲的周期。方波信号x(t)的波形如图2-86所示,周期为T ,幅度为1,脉宽为τ。对方波来讲,占空比为1/2,因此:T=2τ。
在这里插入图片描述
在这里插入图片描述
,这说明幅度为1的方波信号的直流分量为0.5。
在这里插入图片描述
上述结果对周期矩形信号具有普适性,假定占空比为1/n,即T=nτ,代入上面的傅里叶系数表达式,得
在这里插入图片描述

周期信号的离散谱

构成周期信号的所有复指数信号成分可以用傅里叶系数来描述,但是傅里叶系数不够直观,有没有什么办法可以把傅里叶系数直观地呈现
出来呢?这就引出了频谱。

三维频谱

以频率为横轴,将所有c_k画到ω=kω_0处与横轴垂直的复平面上,就得到了三维频谱x-y-w,如图2-88所示。
在这里插入图片描述

周期为1s的方波信号,其三维频谱如图2-89所示。
在这里插入图片描述

幅度频谱和相位频谱

以频率为横轴,以幅度为纵轴,将所有c_k的幅度(也就是模)画
到一张图中,这就是幅度谱。周期为1s的方波信号幅度谱如图2-91所示。
在这里插入图片描述
以频率为横轴,以初相为纵轴,将所有c_k的初相画到一张图中,
这就是相位谱。周期为1s的方波信号相位谱如图2-92所示。
在这里插入图片描述
继续考虑前面周期矩形信号的例子,保持脉宽不变,逐步增大周
期,得到不同占空比的周期矩形信号,对其频谱进行对比。
在这里插入图片描述
在这里插入图片描述

很明显,周期每扩大一倍,谱线的数量也扩大一倍,谱线间隔和谱线长度都会减小一半。随着周期的不断增大,谱线间隔越来越小,谱线长度也越来越短。

非周期信号的连续谱

对于周期矩形信号,保持脉宽τ 不变,当周期T 趋于无穷大时,周
期矩形信号将变成非周期矩形脉冲信号,如图2-107所示。换句话说,
非周期矩形脉冲信号可以看成是周期矩形信号的周期趋于无穷大得到的。
在这里插入图片描述
根据周期矩形信号傅里叶系数表达式:
在这里插入图片描述
T 趋于无穷大时,n也趋于无穷大,因此频谱的谱线间隔和长度都
将趋近于零,如图2-108所示。
在这里插入图片描述

这给非周期信号的频谱分析带来了很大麻烦。前面我们分析周期矩形信号的频谱时,发现这样一个规律:周期每扩大一倍,谱线数量也扩大一倍,谱线间隔和谱线长度都会减小一半。设想一下:如果我们用谱线间隔去除谱线长度会怎么样呢?二者的商不会随周期的增大而变化。这就引出了连续谱。
对于周期矩形信号来讲,谱线的长度等于c_k ,谱线的间隔等于基
波频率f_0,二者的商就等于:c_k/f_0 。如果以kf_0~(k+1)f_0为底边,
画一个宽为f_0 、面积为c_k的矩形,c_k/f_0就是该矩形的高,如图2-
109所示。
在这里插入图片描述
由周期矩形信号傅里叶系数表达式:

c_k=1/n sinc(k/n)
得:
c_k/f_0 =1/(nf_0 ) sinc(k/n)=τsinc(τkf_0)
可以看出,c_k/f_0的取值就是对τsinc(τf)的平顶采样,采样间隔为f_0,将所有矩形顶端连接起来,将得到一条阶梯状折线。
将幅度为1、脉宽τ=0.5、周期分别为1、2、4的周期矩形信号的c_k/f_0阶梯状折线和离散谱画在一起,如图2-110所示
在这里插入图片描述

很明显,随着周期的增大,阶梯状折线逐渐逼近τsinc(τf)这条曲线。可以想象:当τ→∞时,周期矩形信号演变为非周期矩形脉冲信号,二者将完全重合。由此可知,幅度为1、脉宽为τ的非周期矩形脉冲信号的连续频谱是:X(f)=τsinc(τf)。
幅度为1、脉宽τ =0.5的矩形脉冲信号的连续谱如图2-111所示。
在这里插入图片描述

连续谱中纵轴代表的是c_k/f_0,因此连续谱也被称为频谱密度。

傅里叶变换

前面以矩形脉冲信号为例介绍了非周期信号的连续谱。如果是一般的非周期信号,如何求其连续谱呢?这就引出了傅里叶变换。
将推导非周期矩形信号连续谱的方法推广到一般非周期信号,如图
2-112所示。
在这里插入图片描述

(1) 以T为周期,对非周期信号x (t )进行周期性拓展得到周期信号x_T (t )。
(2) 求出周期信号x_T (t )的傅里叶系数。
在这里插入图片描述
(3) 由c_k求c_k/f_0。
在这里插入图片描述
(4) T趋于无穷大时,f_0趋于0,c_k/f_0演变为X(f),x_T (t )演变为x (t ),kf_0演变为f,由此可得到非周期信号x (t )的连续谱:
在这里插入图片描述
这个式子就是傅里叶正变换。

傅里叶逆变换

如何由连续谱X(f)求对应的非周期信号x (t )呢?方法如图2-113所示。
在这里插入图片描述

(1) 根据连续谱X(f)的含义,只要以f_0为间隔对X(f)进行采样,采样结果乘以f_0,即可得到一个周期信号的傅里叶系数c_k ,该周期信号的周期T =1/f_0。
c_k=f_0 X(kf_0 )
(2) 已知c_k,利用傅里叶级数展开式,就可以求得周期信号x_T (t )
在这里插入图片描述

将 c_k=f_0 X(kf_0 )代入,得:
在这里插入图片描述
(3) 令周期T 趋于无穷大,即可得到非周期信号x (t )。T趋于无穷大,也就意味着f_0趋于0,kf_0趋于f:
在这里插入图片描述
这个式子就是傅里叶逆变换的由来。
上面的傅里叶变换表达式中使用的变量是f,有时候傅里叶变换表达式也使用ω 作为变量。由ω =2πf ,得到:f =ω/ 2π,代入上面的傅里叶变换表达式,很容易得到变量为ω 的傅里叶变换表达式。
在这里插入图片描述

周期信号的傅里叶变换

傅里叶变换是由非周期信号引出的,对周期信号是否适用呢?如果对周期信号也适用,则周期信号和非周期信号的频谱分析就可以统一到傅里叶变换这一种方法了。
根据傅里叶级数展开,周期信号可以分解为一系列复指数信号e^(jk2πf_0 t)之和:
在这里插入图片描述
根据傅里叶变换的定义:
在这里插入图片描述
将x (t )代入,得
在这里插入图片描述
也就是说: 周期信号的傅里叶变换是由一系列的冲激函数构成,这些冲激位于信号的基波和各谐波频率处,冲激的强度是傅里叶系数c_k。
周期为1秒的方波信号的傅里叶变换如图2-128所示。
在这里插入图片描述

结合前面傅里叶变换计算得其实是频谱密度函数,周期信号的频谱幅值为c_k,且只在kf_0处有值,因此频谱密度函数是在kf_0处面积为c_k,高度为无穷大的冲激函数。

离散傅里叶正变换

离散傅里叶正变换的输入是N 个时域样点数据:x (n ),输出是N 个频域样点数据:X (k )。
x (n )到X (k )的变换关系:
在这里插入图片描述
即离散傅里叶正变换表达式。下面以复指数信号的频谱分析为例,认识一下离散傅里叶正变换。频率为1Hz的复指数信号e^(j2π t),如图2-184所示。
在这里插入图片描述

截取上述复指数信号的一个周期,并以8Hz采样频率对其进行采
样,如图2-185所示。
在这里插入图片描述

对采样数据进行离散傅里叶变换,如图2-186所示。
在这里插入图片描述

频率为1Hz的复指数信号的离散傅里叶变换只在k =1处有值,这个
好理解,因为k =1对应的频率就是1Hz。
再来看一下频率为-1Hz的复指数信号e^(-j2π t),如图2-187所示。
截取上述复指数信号的一个周期,并以8Hz采样频率对其进行采
样,如图2-188所示。
对采样数据进行离散傅里叶变换,如图2-189所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
频率为-1Hz的复指数信号的离散傅里叶变换只在k =7处有值,这如何理解呢?离散傅里叶正变换的表达式中限定了k的取值范围为:0~N -1,现在放开限制,看看DFT的结果会是什么样?接着前面这个例子,放开k的取值范围限制,结果如图2-190所示
在这里插入图片描述

很明显,放开对k的取值范围的限制后,离散傅里叶变换的结果X(k )成为一个周期函数,以N 为周期无限循环。
X(k+N )=X(k )
很明显:N =8的情况下,k =7的X(k )取值与k =-1的X(k )取值是相同的,因此只要认为k =7对应的频率为-1Hz就好理解了。根据采样定理,采样频率大于等于两倍信号最高频率,因此信号的最高频率一定小于等于4Hz,以周期N =8无限循环不会造成频谱混乱。

从前面频率为1Hz的复指数信号一个周期采样数据的8点DFT来看,k =1时X (k )的取值为8。对比一下频率为1Hz的复指数信号的傅里叶系数,其取值为1,如图2-191所示。
在这里插入图片描述

可以发现:用N 去除复指数信号一个周期采样数据的DFT结果,刚好与复指数信号的傅里叶系数相等,如图2-192所示。
在这里插入图片描述

这揭示了离散傅里叶正变换的本质:
表面上看是对时域采样数据进行N 点离散傅里叶正变换,实质上求的是被采样信号周期性拓展得到的周期信号的傅里叶系数再乘以点数N 。
在这里插入图片描述

离散傅里叶逆变换

离散傅里叶逆变换正好相反,输入是N 个频域的样点数据:X (k),输出是N个时域的样点数据:x (n ),X (k)到x (n )的变换关系为:
在这里插入图片描述
结合图2-195可得出离散傅里叶逆变换的本质:
表面上看是对频域采样数据X (k)进行N点离散傅里叶逆变换,实质上是用X (k)/N作为傅里叶系数对复指数信号进行加权合成一个周期信号,再对一个周期进行采样得到N个时域采样数据。

通信系统中传输的是实信号还是复信号?

物理可实现的信号都是实数信号,复数信号不可实现。复信号的本质是并行传输的两路实信号,之所以被称为复信号,只是因为这个信号可以用复数来表示。引入复信号是为了便于描述和信号处理,实际通信系统中都是并行传输两路实信号,并没有传输虚数j。

如何理解通信频谱中的负频率?

(1) 对于双边频谱,负频率kω_0只有数学意义而无物理意义。引入负频率的原因是:对于实函数f(t),分解成虚指数必须有共轭对e^(jkω_0 t)和e^(-jkω_0 t),才能保证f(t)的实函数性质不变。
(2) 也有观点认为,负频率有重要的物理意义。实信号的双边频谱是对称的。如果它的单边频带宽 W,考虑到负频率成分,实际占的频谱区域就是±W,所以通信中要传输这样的信号就需要占用 2W的频带宽度。为了节省频带,人们就发明了Hilbert变换,它可以把信号的正频率频谱移相-90°,把负频率频谱移相90°,然后再将这个信号移相90°与原信号相加,使两者的负频率成分互相抵消,正频率成分加倍,构成一个没有负频率频谱的复信号,(如同上面所说的二相异步电机那样)。这个复信号的带宽就只占W了。用这个方法,使频带节约了一半。在这里,可以看到负频率成分的重要性,在传送信号时。
它是不可或缺的部分。另外,也看到负频率成分与复信号的密切关系。

  • 7
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 傅里叶变换是一种将信号从时域转换到频域的数学工具。它可以将一个信号分解成不同频率的正弦和余弦波的叠加,从而更好地理解信号的特性。 在傅里叶变换中,我们将信号看作是一个周期函数,通过将其分解成不同频率的正弦和余弦波的叠加,可以得到信号在频域上的表示。这个表示可以帮助我们更好地理解信号的频率特性,例如哪些频率成分占主导地位,哪些频率成分对信号的形态有影响等等。 傅里叶变换的计算过程比较复杂,但是我们可以通过一些简单的例子来理解它的基本原理。例如,如果我们有一个周期为1秒的正弦波信号,它的频率为1Hz。我们可以将这个信号表示为一个振幅为1的正弦波,频率为1Hz的叠加。同样地,如果我们有一个周期为2秒的信号,它的频率为0.5Hz,我们可以将它表示为一个振幅为1的正弦波,频率为0.5Hz的叠加。 总之,傅里叶变换是一种非常有用的工具,可以帮助我们更好地理解信号的频率特性。虽然它的计算过程比较复杂,但是我们可以通过一些简单的例子来理解它的基本原理。 ### 回答2: 傅里叶变换是一种将信号从时间域(时域)变换到频率域的数学工具。该变换可以将一个复杂的信号分解成若干个简单的正弦频率信号,使得我们可以更好地理解并处理这个信号。 为了更好地理解傅里叶变换,我们需要了解一些基本概念。 首先,我们需要知道什么是周期信号。周期信号是指在一定时间间隔内重复出现的信号。例如,正弦波就是一种周期信号,它在每个周期内都是相同的形状。可以通过周期信号的重复性,来表示它的固有频率。 其次,我们需要了解什么是频谱频谱是由各个频率成分所组成的信号特征。可以通过对一个信号进行傅里叶变换,将时间域上的信号转换到频率域,并得到它的频谱。 最后,我们需要了解什么是线性变换和反变换。傅里叶变换和反变换是一对线性变换,其中傅里叶变换将一个信号从时域变换到频域,而反变换则将其从频域变换回时域。 傅里叶变换可以被理解为寻找周期信号的合成。换句话说,我们可以将信号分解为许多不同频率的正弦波的叠加。这些正弦波的频率可以用频谱表示出来,而且可以用傅里叶反变换重新组合成原始信号傅里叶变换不仅可以应用于周期信号,也可以应用于非周期信号。 说到这里,你可能会问:傅里叶变换有什么好处呢?首先,傅里叶变换信号处理、通信、图像处理等领域具有广泛应用。其次,傅里叶变换能够提供比时域更多的信息,同时也便于对信号进行分析和处理。例如,通过傅里叶变换,我们可以在频域上滤除不需要的噪声,提取出有用的信号。另外,在数字信号处理中,傅里叶变换常常被用来进行频率域滤波,也可以进行调制和解调操作等等。 总之,傅里叶变换使得我们可以从不同的角度来观察信号,具有很强的应用价值。当然,傅里叶变换的数学原理十分复杂,但理解其基本原理对于我们应用傅里叶变换具有重要的意义。 ### 回答3: 傅里叶变换是一种将一个函数(例如一段声音或图像)分解为其基本频率成分的方法。为了更好地理解傅里叶变换,我们可以先来了解一下频率和周期。 在物理学和信号处理中,频率是指一个事件发生的次数在单位时间内的数量。如果在一个时间段内发生的次数很少,那么这个事件的频率就很低。相反,如果在相同的时间段内发生的次数很多,那么这个事件的频率就很高。 周期是指一个函数在一个特定的时间内重复的时间长度。例如,一个正弦波的周期是指正弦函数在一个完整的周期内完成一个完整的周期。 傅里叶变换是一种数学方法,可以将一个函数分解为其基本频率成分的和。这意味着我们可以将一个函数分解为多个正弦波或余弦波的和,每个波都有特定的振幅、频率和相位。 为了将一个函数分解为傅里叶级数,我们需要先将该函数转换为复指数形式,然后对其进行积分。这样,我们可以得到一组系数,称为傅里叶系数,这些系数描述了每个频率分量的振幅、频率和相位。 通过使用傅里叶变换,我们可以分析许多信号和数据,例如音频、图像和视频。在音频处理中,我们可以使用傅里叶变换将声音分解为不同频率的成分,从而可以进行降噪、音频增强或压缩等处理。在图像处理中,傅里叶变换可以用于检测像素之间的模式或纹理,从而进行图像分割、物体检测等处理。 总之,傅里叶变换是一种非常强大的工具,用于分析和处理信号和数据,它可以将一个函数分解为其基本频率成分的和,从而使我们能够了解和处理信号和数据中的不同模式和特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值