解读Influence of sampling accuracy on augmented reality for laparoscopic image-guided surgery

解读Influence of sampling accuracy on augmented reality for laparoscopic image-guided surgery

1. Material and methods

1.1 Background methodology

在LLRS中,外科医生通常通过腹腔镜摄像机的视频,在医学图像的帮助下,以及在可用的情况下,通过分割的3D重建表面模型,对器官进行可视化手术。所有这些信息都可以显示在手术室的单独屏幕上(如图1所示),也可以与腹腔镜透视图组合到AR中(如图2所示)。如上所述,本研究专注于AR。以下章节描述了本研究中用于实现AR的主要算法:手眼相机校准、基于点的配准(PBR)和AR重投影。
在这里插入图片描述
在这里插入图片描述

1.2 Hand-eye camera calibration

“手眼”标定技术是在机器人领域提出来的[11]。如图3所示,在用于LLRS的IGS中,手眼相机校准是计算立体腹腔镜相机(可称之为“眼睛”)(比如日本东京的奥林巴斯品牌设备ENDOEYE flex3D)和固定在相机上的刚体球(可称之为“手”)之间的转换关系矩阵。本研究采用加拿大NDI厂家的光学跟踪系统Polaris Spectra实现定位跟踪。用rom文件是8700449的刚体球附着在腹腔镜相机上。然后以60Hz的刷新率跟踪腹腔镜摄像机的位置。为了实现相机标定和手眼标定,设计一个96点图案的标定板,上面附着四个刚体球。本文研究中,立体腹腔镜的左眼被校准,并用来增强现实评估。标定板是白色的,带有激光答应的黑色圆圈;通过OpenCV算法检测椭球质心和相机标定。为了计算手眼校准,可以使用方程(1)来计算单姿态的手眼校准变换(即T_C^M,根据图3)
T C M = T C M ∗ T S O ∗ T S C S ∗ T C S C T_{C}^{M} = T_{C}^{M}*T_{S}^{O}*T_{SC}^{S}*T_{C}^{SC} TCM=TCMTSOTSCSTCSC
其中:

  • O是光学定位设备的坐标系;
  • M是附着在腹腔镜相机上的刚体球坐标系;
  • S是附着在标定板上刚体球的坐标系;
  • SC是标定板的坐标系;
  • C是腹腔镜相机坐标系。

本文使用的符号上标表示变换所针对的坐标系,下标表示变换所指向的坐标系。此外,在齐次坐标系下,本文描述的所有变换矩阵都是4×4形式。 T O M T_{O}^{M} TOM T O S T_{O}^{S} TOS通过光学定位设备获得; T S C C T_{SC}^{C} TSCC备注:论文中实际上写的是 T S C S T_{SC}^{S} TSCS,它是错的】通过张正友提出的标定板姿态估计获得;设计特定的标定板使得S和SC的轴线以及原点重合;因此本文中, T S C S T_{SC}^{S} TSCS是4×4单位矩阵。
在这里插入图片描述
为了提高手眼标定的精度和可靠度,作者通过多姿态手眼标定(参见文章《Effective calibration of an endoscope to an optical tracking system for medical augmented reality》),取代了单姿态的方程(1)。

### 对比能量预测在离线强化学习中的应用 对比能量预测(Contrastive Energy Prediction, CEP)是一种用于改进离线强化学习中策略优化的技术。它通过引入一种新的能量函数来指导扩散采样过程,从而提高样本效率和策略性能[^1]。 #### 能量引导扩散采样的核心概念 在离线强化学习中,数据集通常是固定的,无法通过与环境交互获取新数据。因此,如何高效利用已有数据成为关键挑战之一。CEP 方法的核心在于设计了一种基于对比学习的能量模型,该模型能够评估状态-动作对的质量并生成高质量的动作分布。 具体而言,精确能量引导扩散采样(Exact Energy-Guided Diffusion Sampling)旨在通过对动作空间进行连续调整,使得最终采样到的动作更接近最优解。这一过程依赖于一个精心设计的能量函数,其作用类似于传统强化学习中的奖励信号,但更加灵活且适用于静态数据集场景。 以下是实现此方法的一个简化伪代码示例: ```python def contrastive_energy_prediction(state, action_candidates): # 计算每个候选动作的能量值 energies = compute_energies(state, action_candidates) # 使用对比损失训练能量模型 loss = contrastive_loss(energies, positive_action_index) optimize(loss) return energies def exact_energy_guided_diffusion_sampling(state, initial_distribution): current_sample = initial_distribution for t in range(diffusion_steps): noise_level = schedule_noise(t) # 更新当前样本以降低能量 gradient = estimate_gradient(current_sample, state, noise_level) current_sample -= step_size * gradient return current_sample ``` 上述代码展示了两个主要部分:一是 `contrastive_energy_prediction` 函数负责计算给定状态下不同动作的能量;二是 `exact_energy_guided_diffusion_sampling` 实现了一个逐步减少噪声的过程,在每一步都尝试使样本向低能量区域移动。 #### 技术优势 相比传统的离线强化学习算法,CEP 和精确能量引导扩散采样具有以下几个显著优点: - **更高的样本利用率**:由于采用了精细调优的扩散机制,即使面对有限的数据也能有效提取有用信息。 - **更强泛化能力**:通过构建通用型能量函数而非特定参数化的策略网络,可以更好地适应未见过的状态输入。 - **易于扩展至复杂环境**:这种方法天然支持高维连续控制任务,并且理论上可推广到多种不同的领域问题上。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值