机器学习-滑窗

对于时间序列的分类、回归问题,有两类的数据分析方法。一种采用时间敏感网络,例如LSTM。直接将时间序列数据作为特征输入。另一种是先进行特征工程,将时间序列数据切段,对每段内的时间序列数据进行特征提取。再将众多特征作为常规机器学习算法的输入

本节主要对第二种情况的时间序列数据切断进行简要分析

    这是一组传感器采集的时间序列原始数据,期待基于传感器的时间序列信息对其背后的物理现象进行分类。因此,通过红框产生等间隔长度序列。再将红框内的数据进行特征提取。

#20220318 数据滑窗的实现
def remov_list_L(list,new_member):#把list向左移动1个单位,填入new_member
    len_list = len(list)    
    list_new = list
    for i in range (len_list):
        if(i == (len_list-1)):            
            list_new[i] = new_member
        else:
            list_new[i] =list[i+1]
            
    return list_new
     
a =[0] * 5#初始化窗口大小
print(remov_list_L(a, 1))
print(remov_list_L(a, 2))
print(remov_list_L(a, 3))

以上代码为对原始数据进行切断的方法。a为设定的窗口及长度。new_member为下一帧要往窗口中放入的数据。本方法移动间隔为1个单元,对于窗口长度过长导致算法时间过长问题尚未解决。总之,先解决有无问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值