T检验是一种用于比较数据集均值差异的统计方法,包括单样本t检验、配对样本t检验和独立样本t检验,可通过MATLAB、Python和R等工具实现t检验。如果数据不符合正态分布,可考虑使用非参数分析,多余两组数据时,可采用多重比较方法。
1.T检验概述
T检验根据使用场景可以分为三类:
(1) 单样本t检验(One-sample t-test)
用途:比较单个样本的均值与已知总体均值的差异。
假设:样本来自正态分布的总体。
例子:学生的每次数学成绩是否是符合均值为xx的正态分布
(2) 配对样本t检验(Paired Samplest-test)
用途:用于比较同一组样本在两个不同条件下的均值是否显著不同
假设:假设两个条件下的数据是成对的,即每个观察值在两个条件下都有对应。另外,假设成对差值符合正态分布。
例子:班级里的所有学生期中考试和期末考试成绩的数学成绩是否存在差异
(3) 独立样本t检验(Independent Samples t-test)
用途:比较两个独立样本的均值是否显著不同
假设:假设两组数据是独立的,即一个组的观察值不会受到另一个组的影响。,另外,假设两组数据符合正态分布和方差齐性。
例子:两个班级进行同一场考试,学生数学考试成绩是否存在差异
如果样本量很小,就难以检验正态性,在这种情况下需要对所分析的数据有一定的理解。比如,对于考试分数数据,如果清楚分数差异的潜在分布是符合正态分布的。即使是很小的样本量,讲师也可能会采用 t 检验并做出正态性假设。
如果知道潜在测量值不是正态分布的,或者样本量较大并且正态性检验被拒绝,在这种情况下,可以使用非参数分析。这种类型的分析不需要假设数据来自特定的分布。
-
对于单样本 t 检验和配对 t 检验,可以使用Wilcoxon 符号秩检验替代。
-
对于双样本 t 检验,可以使用Wilcoxon 秩和检验替代。
如果有两个以上的组,可以使用多重比较方法。 该方法包括:方差分析 (ANOVA),用于检验所