Task3 XGB算法梳理

参考:https://blog.csdn.net/china1000/article/details/51106856

https://www.zhihu.com/question/41354392

https://blog.csdn.net/weixin_38629654/article/details/80605640

https://blog.csdn.net/weixin_43178406/article/details/86706979

https://www.cnblogs.com/wanglei5205/p/8579244.html

  • CART树
    CART也是决策树的一种,不过是满二叉树,CART可以是强分类器,就跟决策树一样,但是我们可以指定CART的深度,使之成为比较弱的分类器。
    CART使用gini系数来衡量数据集的划分效果而不是香农熵。​
  • 算法原理
    • 引入
      XGboost 是eXtreme Gradient Boosting ,他是在GBM基础上的改进,内部同样采用决策树作为基学习器,XGboost(下文称为XGB)与GBM的区别在于损失函数更新的方式,GBM利用的是梯度下降法的近似方法,而XGB方法则引入了牛顿法进行损失函数的寻优,因为牛顿法使用到了二阶导,这就是为什XGB要叫做极端梯度法。
    • 牛顿法

    • 流程:建立在boosting方法上,利用牛顿法来求解损失函数的最小值。

  • 损失函数


    传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。
  • 分裂结点算法


    分裂点选择的时候也,以目标函数最小化为目标。
  • 正则化


    xgboost在代价函数里加入了正则项,用于控制模型的复杂度,防止过拟合。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。
  • 对缺失值处理
    对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。
  • 权重衰减
    xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)。
  • 支持列抽样
    xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。
  • 支持并行
    xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。可并行的近似直方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。
  • 优缺点
    • 优点:非线性变换比较多,表达能力强,而且不需要做复杂的特征工程和特征变换。
    • 缺点:Boost是一个串行过程,不好并行化,而且计算复杂度高,同时不太适合高维洗漱特征。
  • 应用场景
    可以用于分类和回归问题。在数据挖掘等相关竞赛以及实际工程中都有应用。
  • sklearn参数
    • 常规参数
      • booster
        gbtree 树模型做为基分类器(默认)
        gbliner 线性模型做为基分类器
      • silent
        silent=0时,不输出中间过程(默认)
        silent=1时,输出中间过程
      • nthread
        nthread=-1时,使用全部CPU进行并行运算(默认)
        nthread=1时,使用1个CPU进行运算。
      • scale_pos_weight
        正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好。例如,当正负样本比例为1:10时,scale_pos_weight=10。
    • 模型参数
      • n_estimatores
        含义:总共迭代的次数,即决策树的个数
      • early_stopping_rounds
        含义:在验证集上,当连续n次迭代,分数没有提高后,提前终止训练。
        调参:防止overfitting。
      • max_depth
        含义:树的深度,默认值为6,典型值3-10。
        调参:值越大,越容易过拟合;值越小,越容易欠拟合。
      • min_child_weight
        含义:默认值为1,。
        调参:值越大,越容易欠拟合;值越小,越容易过拟合(值较大时,避免模型学习到局部的特殊样本)。
      • subsample
        含义:训练每棵树时,使用的数据占全部训练集的比例。默认值为1,典型值为0.5-1。
        调参:防止overfitting。
      • colsample_bytree
        含义:训练每棵树时,使用的特征占全部特征的比例。默认值为1,典型值为0.5-1。
        调参:防止overfitting。
    • 学习任务参数
      • learning_rate
        含义:学习率,控制每次迭代更新权重时的步长,默认0.3。
        调参:值越小,训练越慢。
        典型值为0.01-0.2。
      • objective 目标函数
        回归任务
        reg:linear (默认)
        reg:logistic
        二分类
        binary:logistic     概率 
        binary:logitraw   类别
        多分类
        multi:softmax  num_class=n   返回类别
        multi:softprob   num_class=n  返回概率
        rank:pairwise

      • eval_metric
        回归任务(默认rmse)
        rmse--均方根误差
        mae--平均绝对误差
        分类任务(默认error)
        auc--roc曲线下面积
        error--错误率(二分类)
        merror--错误率(多分类)
        logloss--负对数似然函数(二分类)
        mlogloss--负对数似然函数(多分类)
      • gamma
        惩罚项系数,指定节点分裂所需的最小损失函数下降值。​
      • alpha
        L1正则化系数,默认为1。
      • lambda
        L2正则化系数,默认为1。
    • 代码主要函数
      • 载入数据:load_digits()
      • 数据拆分:train_test_split()
      • 建立模型:XGBClassifier()
      • 模型训练:fit()
      • 模型预测:predict()
      • 性能度量:accuracy_score()
      • 特征重要性:plot_importance()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dujiahei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值